On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies

We consider the multidimensional Newton-Einstein equation in static electromagnetic field $$\eqalign{\dot p = F(x,\dot x),\ F(x,\dot x)=-\nabla V(x)+{1\over c}B(x)\dot x,\cr p={\dot x \over \sqrt{1-{|\dot x|^2 \over c^2}}},\ \dot p={dp\over dt},\ \dot x={dx\over dt},\ x\in C^1(\R,\R^d),}\eqno{(*)}$$ where $V \in C^2(\R^d,\R),$ $B(x)$ is the $d\times d$ real antisymmetric matrix with elements $B_{i,k}(x)={\pa\over \pa x_i}\A_k(x)-{\pa\over \pa x_k}\A_i(x)$, and $|\pa^j_x\A_i(x)|+|\pa^j_x V(x)| \le \beta_{|j|}(1+|x|)^{-(\alpha+|j|)}$ for $x\in \R^d,$ $|j| \le 2,$ $i=1..d$ and some $\alpha > 1$. We give estimates and asymptotics for scattering solutions and scattering data for the equation $(*)$ for the case of small angle scattering. We show that at high energies the velocity valued component of the scattering operator uniquely determines the X-ray transforms $P\nabla V$ and $PB_{i,k}$ for $i,k=1..d,$ $i\neq k.$ Applying results on inversion of the X-ray transform $P$ we obtain that for $d\ge 2$ the velocity valued component of the scattering operator at high energies uniquely determines $(V,B)$. In addition we show that our high energy asymptotics found for the configuration valued component of the scattering operator doesn't determine uniquely $V$ when $d\ge 2$ and $B$ when $d=2$ but that it uniquely determines $B$ when $d\ge 3.$

[1]  Hiroshi Ito High-energy behavior of the scattering amplitude for a Dirac operator , 1995 .

[2]  G. Eskin,et al.  Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy , 1995 .

[3]  Nicoleau Francois A stationary approach to inverse scattering for schrodinger operators with first order perturbation , 1997 .

[4]  R. Weder,et al.  Inverse potential scattering: A geometrical approach , 1995 .

[5]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[6]  A. Jollivet On inverse scattering for the multidimensional relativistic Newton equation at high energies , 2005, math-ph/0502040.

[7]  INVERSE SCATTERING PROBLEMS FOR SCHRODINGER OPERATORS WITH MAGNETIC AND ELECTRIC POTENTIALS , 1997 .

[8]  R. Novikov,et al.  A multidimensional inverse problem in quantum and acoustic scattering , 1988 .

[9]  Karl von Meyenn Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen , 1990 .

[10]  Roman Novikov The d-bar approach to approximate inverse scattering at fixed energy in three dimensions , 2005 .

[11]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[12]  Wave operators for classical particle scattering , 1971 .

[13]  R. Weder,et al.  On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity , 2005, math-ph/0508020.

[14]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[15]  Silke Arians Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials , 1997 .

[16]  R. Novikov Small angle scattering andX-ray transform in classical mechanics , 1999 .

[17]  S. G. Gindikin,et al.  Integral geometry in affine and projective spaces , 1982 .