Electrically driven plasmon chip: Active plasmon filter

We have developed an electrically driven plasmon chip, i.e., an active plasmon filter, consisting of a metallic subwavelength grating modulated by a nano-electro-mechanical system (NEMS) type actuator. The device shifts the plasmon resonance wavelength and the transmittance when an electrical signal is applied. The fabricated filter shows resonance wavelength shifts of 60 nm with a bias voltage of less than 10 V. A rigorous numerical calculation confirms the origin of the surface plasmon resonance and qualitatively explains the effect. Such NEMS optical devices offer rapid voltage-controlled plasmonic tuning of 20 MHz, opening up applications in agile sensing and nanoscale object trapping using actively tailored optical hot spots.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[3]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[4]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[5]  Atilla Aydinli,et al.  Tunable surface plasmon resonance on an elastomeric substrate. , 2009, Optics express.

[6]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[7]  Yongdong Jin Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine , 2012, Advanced materials.

[8]  Luis Martín-Moreno,et al.  Transmission and focusing of light in one-dimensional periodically nanostructured metals , 2002 .

[9]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[10]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[11]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[12]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[13]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[14]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[15]  Sergey I. Bozhevolnyi,et al.  Extraordinary optical transmission enhanced by nanofocusing. , 2010, Nano letters.

[16]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[17]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[18]  Koray Aydin,et al.  Characterization of the tunable response of highly strained compliant optical metamaterials , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Michael Curt Elwenspoek,et al.  Comb-drive actuators for large displacements , 1996 .

[20]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[21]  Stephan Link,et al.  Active modulation of nanorod plasmons. , 2011, Nano letters.

[22]  Yan Pennec,et al.  Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths , 2009 .

[23]  J. Heber Plasmonics: Surfing the wave , 2009, Nature.

[24]  Eva M. Weig,et al.  Universal transduction scheme for nanomechanical systems based on dielectric forces , 2009, Nature.

[25]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[26]  K. Hane,et al.  Variable optical reflectance of a self-supported Si grating , 2006 .

[27]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .