Isotropic 3D Nanoscopy based on single emitter switching.

We propose and analyze a method for isotropic resolution in far-field fluorescence nanoscopy based on switching and mathematically localizing individual emitters. Under typical imaging conditions, the coherent detection of fluorescence light through two opposing high angle lenses strongly improves the 3D-resolution down to 5-10nm in all directions. Furthermore, we give a detailed analysis of the resolution of this and other single molecule switching based approaches using the Fisher information matrix.We verify the results by Monte-Carlo simulations of the imaging process and by applying a simple maximum-likelihood estimator for position determination.

[1]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[2]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[3]  Christian Eggeling,et al.  Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. , 2008, Nano letters.

[4]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[5]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[6]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[7]  Christian Eggeling,et al.  Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S W Hell,et al.  Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. , 1994, Optics letters.

[9]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[11]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[12]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[13]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  W. Skarnes,et al.  The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Egner,et al.  Hair cell synaptic ribbons are essential for synchronous auditory signalling , 2005, Nature.

[16]  Hilmar Gugel,et al.  Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. , 2004, Biophysical journal.

[17]  Michael D. Mason,et al.  Ultra-High Resolution Imaging of Biomolecules by Fluorescence Photoactivation Localization Microscopy (FPALM) , 2007 .

[18]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[19]  C. Mackay,et al.  Photon counting strategies with low-light-level CCDs , 2003, astro-ph/0307305.

[20]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[21]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[22]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[24]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[26]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[27]  S W Hell,et al.  Photochromic rhodamines provide nanoscopy with optical sectioning. , 2007, Angewandte Chemie.

[28]  S W Hell,et al.  Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  M. Unser,et al.  A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. , 2005, Optics express.

[30]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[31]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[32]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[33]  M. Kendall Theoretical Statistics , 1956, Nature.

[34]  A. Cramer-Rao lower bounds on the performance of charge-coupled-device optical position estimators , 1985 .

[35]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[36]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[37]  Michael W. Davidson,et al.  Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes , 2007, Proceedings of the National Academy of Sciences.

[38]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[39]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[40]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[41]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[42]  D. Van Dyck,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: a theoretical framework. , 2005 .

[43]  Alexander Egner,et al.  4Pi-microscopy of the Golgi apparatus in live mammalian cells. , 2004, Journal of structural biology.

[44]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[46]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.