The Local Nature of List Colorings for Graphs of High Girth

We consider list coloring problems for graphs $\mathcal{G}$ ofgirth larger than clogΔ-1n, where nand Δ≥ 3 are,respectively, the order and the maximum degree of $\mathcal{G}$,and cis a suitable constant. First, we determine that theedge and total list chromatic numbers of these graphs are$\chi'_l({\mathcal{G}}) = \Delta$ and $\chi''_l({\mathcal{G}}) =\Delta + 1$. This proves that the general conjectures ofBollobas and Harris (1985), Behzad and Vizing (1969) andJuvan, Mohar and `krekovski (1998) hold for this particular classof graphs. Moreover, our proofs exhibit a certain degree of "locality",which we exploit to obtain an efficient distributed algorithm ableto compute both kinds of optimal list colorings. Also, using an argument similar to one of Erdos, we showthat our algorithm can compute k-list vertex colorings ofgraphs having girth larger than clogk-1n.

[1]  Shuji Isobe,et al.  Total Colorings Of Degenerate Graphs , 2007, Comb..

[2]  Ravi Jain,et al.  Applying randomized edge coloring algorithms to distributed communication: an experimental study , 1995, SPAA '95.

[3]  J Hang,et al.  THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS , 1988 .

[4]  Aravind Srinivasan,et al.  End-to-end packet-scheduling in wireless ad-hoc networks , 2004, SODA '04.

[5]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[6]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[7]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[8]  Bojan Mohar,et al.  List Total Colourings of Graphs , 1998, Combinatorics, Probability and Computing.

[9]  Aravind Srinivasan,et al.  Fast randomized algorithms for distributed edge coloring , 1992, PODC '92.

[10]  Takao Nishizeki,et al.  Edge-Coloring and f-Coloring for Various Classes of Graphs , 1994, J. Graph Algorithms Appl..

[11]  Aravind Srinivasan,et al.  On the Complexity of Distributed Network Decomposition , 1996, J. Algorithms.

[12]  Alessandro Panconesi,et al.  Near-Optimal, Distributed Edge Colouring via the Nibble Method , 1996, Theor. Comput. Sci..

[13]  M. Karonski,et al.  Distributed O(∆ log n)-Edge-Coloring Algorithm , 2022 .

[14]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[15]  Béla Bollobás,et al.  List-colourings of graphs , 1985, Graphs Comb..

[16]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[17]  P. Erdös On circuits and subgraphs of chromatic graphs , 1962 .

[18]  Jeff Kahn,et al.  Asymptotics of the list-chromatic index for multigraphs , 2000, Random Struct. Algorithms.

[19]  Alexandr V. Kostochka,et al.  List edge chromatic number of graphs with large girth , 1992, Discret. Math..

[20]  松尾 悠生,et al.  List-colorings of graphs , 2007 .

[21]  J. Kahn Asymptotics of the list-chromatic index for multigraphs , 2000 .

[22]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[23]  Andrzej Czygrinow,et al.  Distributed O(Delta log(n))-Edge-Coloring Algorithm , 2001, ESA.

[24]  Aravind Srinivasan,et al.  The local nature of Δ-coloring and its algorithmic applications , 1995, Comb..

[25]  Flavio Chierichetti,et al.  The Local Nature of List Colorings for Graphs of High Girth , 2010, SIAM J. Comput..

[26]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[27]  Alessandro Panconesi,et al.  Nearly optimal distributed edge coloring in O (log log n ) rounds , 1997 .

[28]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[29]  Bruce A. Reed,et al.  A Bound on the Total Chromatic Number , 1998, Comb..