Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion

Near-stoichiometric lithium tantalate (SLT) crystals were produced from congruent lithium tantalate by vapor transport equilibration, and several important optical and ferroelectric properties were measured. The effect of vapor transport conditions and surface preparation on reproducible ferroelectric engineering of SLT has been studied. Control of these effects along with dramatic decreases in the sensitivity to photorefractive damage and 532 nm absorption has allowed near-room-temperature generation of 10 W of continuous wave 532 nm radiation by second harmonic generation from 29 W of 1064 nm radiation in a 4 cm long device.

[1]  R. L. Barns,et al.  Lithium tantalate single crystal stoichiometry , 1970 .

[2]  K. Kitamura,et al.  Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system , 1999 .

[3]  Martin M. Fejer,et al.  Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate , 1996, Photonics West.

[4]  Nan Ei Yu,et al.  Stable High-Power Green Light Generation with Thermally Conductive Periodically Poled Stoichiometric Lithium Tantalate , 2004 .

[5]  K. Terabe,et al.  Rearrangement of ferroelectric domain structure induced by chemical etching , 2005 .

[6]  Martin M. Fejer,et al.  Periodic poling of magnesium-oxide-doped lithium niobate , 2002 .

[7]  A. Glass,et al.  Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media , 1975 .

[8]  B. Dischler,et al.  Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods , 1977 .

[9]  K. Kitamura,et al.  Stoichiometric Mg:LiNbO(3) as an effective material for nonlinear optics. , 1998, Optics letters.

[10]  M M Fejer,et al.  Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications. , 2004, Optics letters.

[11]  J. Taylor,et al.  7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate , 2004 .

[12]  Myoungsik Cha,et al.  Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals , 2000 .

[13]  M. Fontana,et al.  Quantitative evaluation of the electro-optic effect and second-order optical nonlinearity of lithium tantalate crystals of different compositions using Raman and infrared spectroscopy , 2006 .

[14]  Martin M. Fejer,et al.  Nanoscale backswitched domain patterning in lithium niobate , 2000 .

[15]  V. Gopalan,et al.  Domain reversal and nonstoichiometry in lithium tantalate , 2001 .

[16]  R. Holman,et al.  Intrinsic nonstoichiometry in the lead zirconate‐lead titanate system determined by Knudsen effusion , 1973 .

[17]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[18]  David Eger,et al.  Average power effects in periodically poled crystals , 2003, SPIE LASE.

[19]  H. Levinstein,et al.  Curie Temperature and Birefringence Variation in Ferroelectric Lithium Metatantalate as a Function of Melt Stoichiometry , 1967 .

[20]  Peter Günter,et al.  Photrefractive Materials and Their Applications II. , 1989 .

[21]  M. Fejer,et al.  Green-induced infrared absorption in MgO doped LiNbO3 , 2001 .

[22]  M. Wöhlecke,et al.  Composition dependence of the ultraviolet absorption edge in lithium tantalate , 2003 .

[23]  M. Jazbinsek,et al.  Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet, and near-ultraviolet light beams , 2002 .

[24]  J. P. Remeika,et al.  Ferroelectricity in the Ilmenite Structure , 1949 .

[25]  R. Macfarlane,et al.  Two-color holography in reduced near-stoichiometric lithium niobate. , 1998, Applied optics.

[26]  Composition dependence of the OH-stretch-mode spectrum in lithium tantalate , 2004 .

[27]  Nan Ei Yu,et al.  Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation , 2004 .

[28]  P. F. Bordui,et al.  Stoichiometry issues in single‐crystal lithium tantalate , 1995 .

[29]  L. Michael Hayden,et al.  Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials , 1995 .

[30]  R. Holman,et al.  Nonstoichiometry in ABO3 compounds similar to PbTiO3 , 1975 .

[31]  Jacob O. Barnes,et al.  Optical absorption spectroscopy of Fe2+ and Fe3+ ions in LiNbO3 , 2002 .

[32]  Photorefractive properties of undoped lithium tantalate crystals for various composition , 2004 .

[33]  absorption spectra of pure lithium niobate crystals , 1999 .

[34]  Martin M. Fejer,et al.  UV and visible absorption in LiTaO3 , 1999, Photonics West.

[35]  V. Gopalan,et al.  Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration , 2004 .