A Grassmann-Rayleigh quotient iteration for computing invariant subspaces

The classical Rayleigh quotient iteration (RQI) computes a 1-dimensional invariant subspace of a symmetric matrix A with cubic convergence. We propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. The geometry of the algorithm on the Grassmann manifold Gr(p,n) is developed to show cubic convergence and to draw connections with Newton algorithms on Riemannian manifolds.

[1]  P. Absil,et al.  A Grassmann-Rayleigh Quotient Iteration for , 2002 .

[2]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[3]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[4]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[5]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[6]  A. Bloch Hamiltonian and Gradient Flows, Algorithms and Control , 1995 .

[7]  Jack J. Dongarra,et al.  Solving linear systems on vector and shared memory computers , 1990 .

[8]  B. F. Doolin,et al.  Introduction to Differential Geometry for Engineers , 1990 .

[9]  J. Smillie,et al.  The dynamics of Rayleigh quotient iteration , 1989 .

[10]  Michel Verhaegen,et al.  On the use of unitary state-space transformations , 1985 .

[11]  F. R. Gantmakher The Theory of Matrices , 1984 .

[12]  F. Chatelin Simultaneous Newton’s Iteration for the Eigenproblem , 1984 .

[13]  J. H. Wilkinson,et al.  IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS , 1983 .

[14]  David S. Watkins,et al.  Understanding the $QR$ Algorithm , 1982 .

[15]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[16]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[17]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[18]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[19]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[20]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[21]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .

[22]  H. Rutishauser Computational aspects of F. L. Bauer's simultaneous iteration method , 1969 .

[23]  Peter Lancaster,et al.  The theory of matrices , 1969 .