A Fast Radio Burst Search Method for VLBI Observation

We introduce the cross spectrum based FRB (Fast Radio Burst) search method for VLBI observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post processing, which fully utilizes the cross spectrum fringe phase information and therefore maximizes the power of single pulse signals. Working with cross spectrum greatly reduces the effect of radio frequency interference (RFI) compared with using auto spectrum. Single pulse detection confidence increases by cross identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.

[1]  S. V. Pogrebenko,et al.  The SFXC software correlator for very long baseline interferometry: algorithms and implementation , 2015, 1502.00467.

[2]  K. Herkenhoff,et al.  Handbook of CCD Astronomy; Cambridge Observing Handbooks for Research Astronomers , 2000 .

[3]  H. J. van Langevelde,et al.  FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy , 2017, 1705.07698.

[4]  Harald Schuh,et al.  VLBI: A fascinating technique for geodesy and astrometry , 2012 .

[5]  L. Gurvits,et al.  Spacecraft VLBI and Doppler tracking: algorithms and implementation , 2012, 1203.4408.

[6]  Zsolt Paragi,et al.  Transient science with the e-EVN , 2016, 1612.00508.

[7]  A. T. Deller,et al.  DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments , 2007, astro-ph/0702141.

[8]  J. Katz INFERENCES FROM THE DISTRIBUTIONS OF FAST RADIO BURST PULSE WIDTHS, DISPERSION MEASURES, AND FLUENCES , 2015, 1505.06220.

[9]  J. Katz,et al.  HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS , 2015, 1512.04503.

[10]  Jie-Shuang Wang,et al.  FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS , 2016, 1603.02014.

[11]  Alan E. E. Rogers,et al.  A very-long-baseline interferometer system for geodetic applications , 1976 .

[12]  David R. Thompson,et al.  V-FASTR: THE VLBA FAST RADIO TRANSIENTS EXPERIMENT , 2011, 1104.4908.

[13]  R. Lynch,et al.  THE REPEATING FAST RADIO BURST FRB 121102: MULTI-WAVELENGTH OBSERVATIONS AND ADDITIONAL BURSTS , 2016, 1603.08880.

[14]  Y. F. Huang,et al.  FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS , 2015, 1502.05171.

[15]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[16]  S. Burke-Spolaor,et al.  A MILLISECOND INTERFEROMETRIC SEARCH FOR FAST RADIO BURSTS WITH THE VERY LARGE ARRAY , 2014, 1412.7536.

[17]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[18]  H. J. van Langevelde,et al.  The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales , 2017, 1701.01099.

[19]  N. Bhat,et al.  Simultaneous single-pulse observations of radio pulsars IV: flux density spectra of individual pulses , 2003, astro-ph/0306455.

[20]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[21]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[22]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[23]  E. Keane,et al.  Fast radio bursts : search sensitivities and completeness , 2015 .

[24]  Peter Klages,et al.  CHIME FRB: An application of FFT beamforming for a radio telescope , 2017, 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS).

[25]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[26]  C C Counselman,et al.  Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis , 1983, Science.

[27]  S. Burke-Spolaor,et al.  Five new fast radio bursts from the HTRU high-latitude survey at Parkes: First evidence for two-component bursts , 2015, 1511.07746.

[28]  David R. Thompson,et al.  DETECTION OF FAST RADIO TRANSIENTS WITH MULTIPLE STATIONS: A CASE STUDY USING THE VERY LONG BASELINE ARRAY , 2011, 1104.4900.

[29]  T. Joseph W. Lazio,et al.  The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 , 2017, 1701.01100.

[30]  J. I. Katz,et al.  Fast Radio Bursts---A Brief Review: Some Questions, Fewer Answers , 2016, 1604.01799.

[31]  W. Alef,et al.  DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator , 2011, 1101.0885.

[32]  O. I. Wong,et al.  WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst , 2023, The Astrophysical Journal.

[33]  Dirk Behrend Data Handling within the International VLBI Service , 2013, Data Sci. J..

[34]  J. Wang,et al.  REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS , 2016, 1603.08207.

[35]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[36]  A. Possenti,et al.  Discovery of Pulsations and a Possible Spectral Feature in the X-Ray Emission from Rotating Radio Transient J1819–1458 , 2007, 0708.1149.

[37]  F. Jankowski,et al.  Fast Radio Transient searches with UTMOST at 843 MHz , 2016, 1601.02444.

[38]  P. Zarka,et al.  Radio emissions from pulsar companions : a refutable explanation for galactic transients and fast radio bursts , 2014, 1408.1333.

[39]  Bing Zhang A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS , 2013, 1310.4893.

[40]  Tetsuro Kondo,et al.  An algorithm of wideband bandwidth synthesis for geodetic VLBI: WIDEBAND BANDWIDTH SYNTHESIS , 2016 .

[41]  A. Ganguly,et al.  Dense magnetized plasma associated with a fast radio burst , 2015, Nature.

[42]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[43]  Alan E. E. Rogers,et al.  PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES , 2016, 1602.05527.

[44]  U. Pen,et al.  LOCAL CIRCUMNUCLEAR MAGNETAR SOLUTION TO EXTRAGALACTIC FAST RADIO BURSTS , 2015, 1501.01341.

[45]  P. M'esz'aros,et al.  COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS , 2013, 1307.7708.

[46]  Axel Nothnagel,et al.  International VLBI Service for Geodesy and Astrometry , 2017, Journal of Geodesy.

[47]  David R. Thompson,et al.  LIMITS ON FAST RADIO BURSTS FROM FOUR YEARS OF THE V-FASTR EXPERIMENT , 2016, 1605.07606.

[48]  R. Lynch,et al.  Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102 , 2017, 1705.07824.

[49]  Xubang Shen,et al.  Expanding the usage of the star sensor in spacecraft , 2007, Other Conferences.

[50]  Karen D. Baver,et al.  International Vlbi Service for Geodesy and Astronomy , 2013 .

[51]  F. Jankowski,et al.  First interferometric detections of Fast Radio Bursts , 2017, Proceedings of the International Astronomical Union.

[52]  H. Falcke,et al.  Fast radio bursts: the last sign of supramassive neutron stars , 2013, 1307.1409.

[53]  Patrick Charlot,et al.  The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry , 1998 .