In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for Experimental Medicine Studies

The analysis of neural circuits can provide crucial insights into the mechanisms of neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel therapeutics. Here we use behavioral variant frontotemporal dementia (bvFTD) as a model disease. We demonstrate that inversion of canonical microcircuit models to noninvasive human magnetoencephalography, using dynamic causal modeling, can identify the regional- and laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate patients from matched healthy controls. Using such models, we show that changes in local coupling in frontotemporal dementia underlie the failure to adequately establish sensory predictions, leading to altered prediction error responses in a cortical information-processing hierarchy. Using machine learning, this model-based approach provided greater case-control classification accuracy than conventional evoked cortical responses. We suggest that this approach provides an in vivo platform for testing mechanistic hypotheses about disease progression and pharmacotherapeutics.

[1]  J. Morrison,et al.  The aging brain: morphomolecular senescence of cortical circuits , 2004, Trends in Neurosciences.

[2]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[3]  Roger Anwyl,et al.  Synaptic plasticity in animal models of early Alzheimer's disease. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Luca Passamonti,et al.  18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy , 2017, Brain : a journal of neurology.

[5]  Karl J. Friston,et al.  Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling , 2015, NeuroImage.

[6]  R. Näätänen,et al.  The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in ageing. , 2011, Brain : a journal of neurology.

[7]  James B. Rowe,et al.  Reorganisation of brain networks in frontotemporal dementia and progressive supranuclear palsy☆ , 2013, NeuroImage: Clinical.

[8]  Roger A. Barker,et al.  The Cambridge Behavioural Inventory revised , 2008, Dementia & neuropsychologia.

[9]  John R Hodges,et al.  The Addenbrooke's Cognitive Examination Revised (ACE‐R): a brief cognitive test battery for dementia screening , 2006, International journal of geriatric psychiatry.

[10]  W. Seeley,et al.  Selective functional, regional, and neuronal vulnerability in frontotemporal dementia , 2008, Current opinion in neurology.

[11]  Raymond J. Dolan,et al.  Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations , 2016, NeuroImage.

[12]  Luca Passamonti,et al.  [18F]AV-1451 binding in vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of primary progressive aphasia , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[13]  C. Stam Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders , 2010, Journal of the Neurological Sciences.

[14]  Urmi Sengupta,et al.  Tau Immunotherapy Modulates Both Pathological Tau and Upstream Amyloid Pathology in an Alzheimer's Disease Mouse Model , 2015, The Journal of Neuroscience.

[15]  Joachim M. Buhmann,et al.  Generative Embedding for Model-Based Classification of fMRI Data , 2011, PLoS Comput. Biol..

[16]  Efstathios D. Gennatas,et al.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. , 2010, Brain : a journal of neurology.

[17]  R. Henson,et al.  Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar degeneration: pathology versus phenotype , 2018, Brain : a journal of neurology.

[18]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[19]  James B. Rowe,et al.  Magnetoencephalography of frontotemporal dementia: spatiotemporally localized changes during semantic decisions. , 2011, Brain : a journal of neurology.

[20]  Friedemann Pulvermüller,et al.  They played with the trade: MEG investigation of the processing of past tense verbs and their phonological twins , 2012, Neuropsychologia.

[21]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[22]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[23]  Karl J. Friston,et al.  A dynamic causal model for evoked and induced responses , 2012, NeuroImage.

[24]  I. Veer,et al.  Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study , 2008, Brain : a journal of neurology.

[25]  Judith E. Hall,et al.  Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans , 2015, The Journal of Neuroscience.

[26]  James B. Rowe,et al.  The Impact of Neurodegeneration on Network Connectivity: A Study of Change Detection in Frontotemporal Dementia , 2013, Journal of Cognitive Neuroscience.

[27]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[28]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[29]  Karl J. Friston,et al.  Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis , 2018, Brain : a journal of neurology.

[30]  Holly N. Phillips,et al.  Hierarchical Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple Dimensions , 2015, The Journal of Neuroscience.

[31]  Karl J. Friston,et al.  Reflections on agranular architecture: predictive coding in the motor cortex , 2013, Trends in Neurosciences.

[32]  Raymond J. Dolan,et al.  Consistent spectral predictors for dynamic causal models of steady-state responses , 2011, NeuroImage.

[33]  Luca Passamonti,et al.  Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy , 2018, Brain : a journal of neurology.

[34]  Pat Levitt,et al.  Neurodevelopment and the Origins of Brain Disorders , 2015, Neuropsychopharmacology.

[35]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[36]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[37]  Nastaran Gharkholonarehe,et al.  Amyloid Reduction by Amyloid-β Vaccination Also Reduces Mouse Tau Pathology and Protects from Neuron Loss in Two Mouse Models of Alzheimer's Disease , 2009, The Journal of Neuroscience.

[38]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[39]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[40]  Karl J. Friston,et al.  Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma , 2017, NeuroImage.

[41]  D. Umbricht,et al.  Mismatch negativity in schizophrenia: a meta-analysis , 2005, Schizophrenia Research.

[42]  Trevor W Robbins,et al.  Reorganization of cortical oscillatory dynamics underlying disinhibition in frontotemporal dementia , 2018, Brain : a journal of neurology.

[43]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[44]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  J. Kril,et al.  Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies , 2004, Acta Neuropathologica.

[46]  Karl J. Friston,et al.  Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation , 2013, The Journal of Neuroscience.

[47]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[48]  Cedric E. Ginestet,et al.  Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson's disease and Progressive Supranuclear Palsy , 2016 .

[49]  Patrick R Hof,et al.  Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. , 2012, Cerebral cortex.

[50]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[51]  S. Kochen,et al.  Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography , 2016, Cortex.

[52]  E. Bullmore,et al.  The hubs of the human connectome are generally implicated in the anatomy of brain disorders , 2014, Brain : a journal of neurology.

[53]  Karl J. Friston,et al.  Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents , 2011, PloS one.

[54]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[55]  R. Näätänen,et al.  The mismatch negativity (MMN): towards the optimal paradigm , 2004, Clinical Neurophysiology.

[56]  Karl J. Friston,et al.  An In Vivo Assay of Synaptic Function Mediating Human Cognition , 2011, Current Biology.