An artificial primitive mimic of the Gramicidin-A channel

[1]  Mihail Barboiu,et al.  Artificial water channels. , 2012, Angewandte Chemie.

[2]  Jun-Li Hou,et al.  Single-molecular artificial transmembrane water channels. , 2012, Journal of the American Chemical Society.

[3]  Jonathan K. W. Chui,et al.  Ionic conductance of synthetic channels: analysis, lessons, and recommendations. , 2012, Chemical Society reviews.

[4]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2010. , 2012, Chemical Society reviews.

[5]  Mei Hong,et al.  Mechanisms of Proton Conduction and Gating in Influenza M2 Proton Channels from Solid-State NMR , 2010, Science.

[6]  Huan‐Xiang Zhou,et al.  Insight into the Mechanism of the Influenza A Proton Channel from a Structure in a Lipid Bilayer , 2010, Science.

[7]  Zhen Cao,et al.  Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes. , 2010, Journal of the American Chemical Society.

[8]  Helgi I. Ingólfsson,et al.  Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes , 2010, Journal of The Royal Society Interface.

[9]  S. Matile,et al.  Detection of the activity of ion channels and pores by circular dichroism spectroscopy: G-quartets as functional CD probes within chirogenic vesicles. , 2008, Chirality.

[10]  V. Percec,et al.  Induced helical backbone conformations of self-organizable dendronized polymers. , 2008, Accounts of chemical research.

[11]  Jeffery T. Davis,et al.  Large and stable transmembrane pores from guanosine-bile acid conjugates. , 2008, Journal of the American Chemical Society.

[12]  Sergei A Vinogradov,et al.  Selective transport of water mediated by porous dendritic dipeptides. , 2007, Journal of the American Chemical Society.

[13]  Jeffery T. Davis,et al.  Supramolecular architectures generated by self-assembly of guanosine derivatives. , 2007, Chemical Society reviews.

[14]  Christoph A. Schalley,et al.  Analytical methods in supramolecular chemistry , 2006 .

[15]  Mihail Barboiu,et al.  Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. , 2006, Journal of the American Chemical Society.

[16]  S. Matile,et al.  Dendritic folate rosettes as ion channels in lipid bilayers. , 2006, Journal of the American Chemical Society.

[17]  U. Koert,et al.  Crown ether-gramicidin hybrid ion channels: dehydration-assisted ion selectivity. , 2006, Angewandte Chemie.

[18]  R. MacKinnon Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). , 2004 .

[19]  Peter Agre,et al.  Aquaporin water channels (Nobel Lecture). , 2004, Angewandte Chemie.

[20]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Benoît Roux,et al.  Computational studies of the gramicidin channel. , 2002, Accounts of chemical research.

[22]  Jeffery T. Davis,et al.  Ion channel formation from a calix[4]arene amide that binds HCl. , 2002, Journal of the American Chemical Society.

[23]  B. L. de Groot,et al.  Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF , 2001, Science.

[24]  F. Hallett,et al.  Osmotically induced shape changes of large unilamellar vesicles measured by dynamic light scattering. , 2001, Biophysical journal.

[25]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[26]  D Kozono,et al.  Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. , 1999, Journal of molecular biology.

[27]  W. Pangborn,et al.  The conducting form of gramicidin A is a right-handed double-stranded double helix. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  X. Zhou,et al.  A VOLTAGE-GATED ION CHANNEL BASED ON A BIS-MACROCYCLIC BOLAAMPHIPHILE , 1998 .

[29]  R. Lamb,et al.  A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. R. Smith,et al.  A novel method for structure-based prediction of ion channel conductance properties. , 1997, Biophysical journal.

[31]  F. Hallett,et al.  Optical changes in unilamellar vesicles experiencing osmotic stress. , 1996, Biophysical journal.

[32]  K. Ishibashi,et al.  [Aquaporin water channels]. , 1996, Nihon rinsho. Japanese journal of clinical medicine.

[33]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[34]  O. Andersen,et al.  Molecular determinants of channel function. , 1992, Physiological reviews.

[35]  S. Oiki,et al.  A dipolar amino acid substitution induces voltage-dependent transitions between two stable conductance states in gramicidin channels. , 1992, Biophysical journal.

[36]  M. Barboiu Imidazole I–quartet Water and Proton Dipolar Channels , 2012 .

[37]  P. Ball Water as an active constituent in cell biology. , 2008, Chemical reviews.

[38]  Richard Horn,et al.  Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels , 2005, The Journal of Membrane Biology.

[39]  P. C. Meier Two-parameter debye-hückel approximation for the evaluation of mean activity coefficients of 109 electrolytes , 1982 .