Linear combination of transformations

Geometric transformations are most commonly represented as square matrices in computer graphics. Following simple geometric arguments we derive a natural and geometrically meaningful definition of scalar multiples and a commutative addition of transformations based on the matrix representation, given that the matrices have no negative real eigenvalues. Together, these operations allow the linear combination of transformations. This provides the ability to create weighted combination of transformations, interpolate between transformations, and to construct or use arbitrary transformations in a structure similar to a basis of a vector space. These basic techniques are useful for synthesis and analysis of motions or animations. Animations through a set of key transformations are generated using standard techniques such as subdivision curves. For analysis and progressive compression a PCA can be applied to sequences of transformations. We describe an implementation of the techniques that enables an easy-to-use and transparent way of dealing with geometric transformations in graphics software. We compare and relate our approach to other techniques such as matrix decomposition and quaternion interpolation.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[3]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[6]  Richard H. Bartels,et al.  An introduction to the use of splines in computer graphics and geometric modeling , 1986 .

[7]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[8]  A. Laub,et al.  Condition Estimates for Matrix Functions , 1989 .

[9]  D. Hestenes The design of linear algebra and geometry , 1991 .

[10]  Ken Shoemake QUATERNIONS AND 4 × 4 MATRICES , 1991 .

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[13]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .

[14]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[15]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[16]  Vijay R. Kumar,et al.  Continuous methods for motion planning , 1996 .

[17]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[18]  Ravi Ramamoorthi,et al.  Fast construction of accurate quaternion splines , 1997, SIGGRAPH.

[19]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[20]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[21]  Vijay Kumar,et al.  Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..

[22]  Jed Lengyel,et al.  Compression of time-dependent geometry , 1999, SI3D.

[23]  Arne Marthinsen,et al.  Interpolation in Lie Groups , 1999, SIAM J. Numer. Anal..

[24]  Wilfried Philips,et al.  An Advanced Color Representation for Lossy Compression of CMYK Prepress Images , 2000, Comput. Graph. Forum.

[25]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[26]  Marc Alexa,et al.  Representing Animations by Principal Components , 2000, Comput. Graph. Forum.

[27]  I. Jolliffe Principal Component Analysis , 2002 .

[28]  Stephen Mann,et al.  Geometric Algebra: A Computational Framework for Geometrical Applications (Part 2) , 2002, IEEE Computer Graphics and Applications.

[29]  Nicholas J. Higham,et al.  Stable iterations for the matrix square root , 1997, Numerical Algorithms.