Nanohandling of Biomaterials

Currently, there is an increasing interest in handling, understanding, and integrating biological systems important for biomedicine, process industry, pharmacy, and biomaterial research. Besides this interest, the demand for adequate, nondestructive, automatable, and fully controllable handling, manipulation, and characterization techniques increases as well. Thanks to the advancements in micro- and nanofabrication and in the robotics area, several approaches and techniques offer us the ability to set up robotic systems, which are able to handle biomaterials down to the nanoscale. In this chapter, some of the most applicable techniques for a robotic and automated use are shown, including advantages and disadvantages as well as current applications and the necessary biological backgrounds for the most common biomaterials a researcher will handle today. So the state of the art for the nanohandling of biomaterials, applicable in current robotic systems and possibly applicable in future robotic systems, is shown as well as our own work on this special field of research.

[1]  T. Ludwig,et al.  Human Endothelium: Target for Aldosterone , 2004, Hypertension.

[2]  K. Mølhave,et al.  Pick-and-place nanomanipulation using microfabricated grippers , 2006, Nanotechnology.

[3]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[4]  Hiroyuki Fujita,et al.  DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. , 2003, Analytical chemistry.

[5]  Gwo-Bin Lee,et al.  Automatic microfluidic platform for cell separation and nucleus collection , 2007, Biomedical microdevices.

[6]  Jean-Marc Breguet,et al.  Nanomanipulation in a scanning electron microscope , 2005 .

[7]  Antonio Giordano,et al.  A critical overview of ESEM applications in the biological field , 2005, Journal of cellular physiology.

[8]  F F Becker,et al.  Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. , 2000, Biophysical journal.

[9]  Michael W. Berns,et al.  Radiation trapping forces on microspheres with optical tweezers , 1993 .

[10]  A. McPherson,et al.  Atomic Force Microscopy Investigation of Vaccinia Virus Structure , 2008, Journal of Virology.

[11]  Toshio Ando,et al.  High-speed AFM and nano-visualization of biomolecular processes , 2008, Pflügers Archiv - European Journal of Physiology.

[12]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[13]  T. Camesano,et al.  Polysaccharide properties probed with atomic force microscopy , 2003, Journal of microscopy.

[14]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[15]  Bradley J. Nelson,et al.  Biological Cell Injection Using an Autonomous MicroRobotic System , 2002, Int. J. Robotics Res..

[16]  D. Kern,et al.  A mechanically actuated silicon microgripper for handling micro- and nanoparticles , 2006 .

[17]  L. Peng,et al.  Study on biological effect of La3+ on Escherichia coli by atomic force microscopy , 2004 .

[18]  P Mestres,et al.  Consequences of tilting of biological specimens in wet mode ESEM imaging , 2007, Microscopy and Microanalysis.

[19]  Sergej Fatikow,et al.  A carbon nanofibre scanning probe assembled using an electrothermal microgripper , 2007 .

[20]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Squirrell,et al.  Imaging Mitochondrial Organization in Living Primate Oocytes and Embryos using Multiphoton Microscopy , 2003, Microscopy and Microanalysis.

[22]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[23]  Félix Pariente,et al.  Nanomechanical properties of globular proteins: lactate oxidase. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Byungkyu Kim,et al.  Analysis of cell separation efficiency in dielectrophoresis-activated cell sorter , 2008, 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[26]  Stefan Thalhammer,et al.  Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection , 2003, European Biophysics Journal.

[27]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[28]  Claude Nogues,et al.  Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM. , 2006, Faraday discussions.

[29]  Robert W. Stark,et al.  Nanomanipulation by Atomic Force Microscopy , 2005 .

[30]  Peter Torben Tang,et al.  Microgrippers: a case study for batch-compatible integration of MEMS with nanostructures , 2007 .

[31]  D. Costa,et al.  Biomolecule-biomaterial interaction: a DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[32]  Klaus Schock,et al.  Characterization and operation of a mechanically actuated silicon microgripper , 2006 .

[33]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[34]  S S Tai,et al.  Manipulating biological samples for environmental scanning electron microscopy observation. , 2001, Scanning.

[35]  David Wood,et al.  Design and testing of a polymeric microgripper for cell manipulation , 2007 .

[36]  Rehana Afrin,et al.  Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy , 2005, Protein science : a publication of the Protein Society.

[37]  Sampo Tuukkanen,et al.  Trapping of 27 bp–8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis , 2006, cond-mat/0609414.

[38]  Maria Dimaki,et al.  Manipulation of biological samples using micro and nano techniques. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[39]  I. Sokolov,et al.  Change in rigidity in the activated form of the glucose/galactose receptor from Escherichia coli: a phenomenon that will be key to the development of biosensors. , 2006, Biophysical journal.

[40]  Y. Huang,et al.  Cell separation by dielectrophoretic field-flow-fractionation. , 2000, Analytical chemistry.

[41]  Michael W. Berns,et al.  Laser trapping in cell biology , 1990 .

[42]  Rishi Gupta,et al.  Nanomanipulation and aggregation limitations of self-assembling structural proteins , 2005, Microelectron. J..

[43]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[44]  Debbie J. Stokes Low Vacuum & ESEM Imaging of Biological Specimens , 2003, Microscopy and Microanalysis.

[45]  H. Hansma,et al.  Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. , 1997, Biophysical journal.

[46]  Andreas Ebner,et al.  Localization of single avidin-biotin interactions using simultaneous topography and molecular recognition imaging. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Ralf Eichhorn,et al.  Dielectrophoretic manipulation of DNA: separation and polarizability. , 2007, Analytical chemistry.

[48]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[49]  Michael Mertig,et al.  Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth , 2004 .

[50]  Hiroyasu Itoh,et al.  Tying a molecular knot with optical tweezers , 1999, Nature.

[51]  Christoph F Schmidt,et al.  Elastic response, buckling, and instability of microtubules under radial indentation. , 2006, Biophysical journal.

[52]  F F Becker,et al.  Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. , 1999, Analytical chemistry.

[53]  Peter Bøggild,et al.  Fabrication and actuation of customized nanotweezers with a 25 nm gap , 2001 .

[54]  Urban Simu,et al.  MICRON: Small Autonomous Robot for Cell Manipulation Applications , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[55]  G. Wuite,et al.  Bacteriophage capsids: tough nanoshells with complex elastic properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[57]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[58]  R. Lal,et al.  Biological applications of atomic force microscopy. , 1994, The American journal of physiology.