Oscillatory Threshold Logic

In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

[1]  Stephen Lynch,et al.  Dynamical Systems with Applications using Maple , 2000 .

[2]  Lynn A. Abelson,et al.  Superconductor integrated circuit fabrication technology , 2004, Proceedings of the IEEE.

[3]  A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. , 1990, Bulletin of mathematical biology.

[4]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[5]  L. Chua Memristor-The missing circuit element , 1971 .

[6]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[7]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[8]  P. Ashwin,et al.  Discrete computation using a perturbed heteroclinic network , 2005 .

[9]  Eric Shea-Brown,et al.  Time scales of spike-train correlation for neural oscillators with common drive. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  R. Hitt,et al.  High Performance HF-VHF All Digital RF Receiver Tested at 20 GHz Clock Frequencies , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[11]  Oleg A. Mukhanov,et al.  Superconductor analog-to-digital converters , 2004, Proceedings of the IEEE.

[12]  Richard J. Lipton,et al.  On the Computational Power of DNA , 1996, Discret. Appl. Math..

[13]  Jin Xu,et al.  A Review on DNA Computing Models , 2007 .

[14]  M. Hidaka,et al.  Fabrication process of planarized multi-layer Nb integrated circuits , 2005, IEEE Transactions on Applied Superconductivity.

[15]  Gheorghe Paun,et al.  Topics in the theory of DNA computing , 2002, Theor. Comput. Sci..

[16]  D. Amparo,et al.  20 ${\hbox{kA/cm}}^{2}$ Process Development for Superconducting Integrated Circuits With 80 GHz Clock Frequency , 2007, IEEE Transactions on Applied Superconductivity.

[17]  Gábor Orosz,et al.  Dynamics on Networks of Cluster States for Globally Coupled Phase Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[18]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[19]  Huxley Af,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. , 1990 .

[20]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[21]  Chun-Yao Wang,et al.  On rewiring and simplification for canonicity in threshold logic circuits , 2011, 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[22]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[23]  J. Kunert,et al.  Reduced Power Consumption in Superconducting Electronics , 2011, IEEE Transactions on Applied Superconductivity.

[24]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[25]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[26]  Deepnarayan Gupta,et al.  High Performance, All Digital RF Receiver Tested at 7.5 GigaHertz , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[27]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[28]  Shinya Hasuo,et al.  Niobium based Josephson circuit technology , 1993 .

[29]  P. M. Tedrow,et al.  Spin-polarized electron tunneling , 1994 .

[30]  Stefano Boccaletti,et al.  Computation Emerges from Adaptive Synchronization of Networking Neurons , 2011, PloS one.

[31]  Lila Kari,et al.  Using DNA to solve the Bounded Post Correspondence Problem , 2000, MCU.

[32]  Sourangshu Mukhopadhyay,et al.  All-optical method for the addition of binary data by nonlinear materials. , 2004, Applied optics.

[33]  Igor V. Vernik,et al.  Magnetic Josephson Junction Technology for Digital and Memory Applications , 2012 .

[34]  O.A. Mukhanov,et al.  Time-to-digital converters based on RSFQ digital counters , 1997, IEEE Transactions on Applied Superconductivity.

[35]  Mohamed A. Elgamel,et al.  Noise Metrics in Flip-Flop Designs , 2005, IEICE Trans. Inf. Syst..

[36]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[37]  Behnam Kia,et al.  Unstable periodic orbits and noise in chaos computing. , 2011, Chaos.

[38]  I Sendiña-Nadal,et al.  Computation as an emergent feature of adaptive synchronization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  C. Yeh,et al.  Optimal-depth threshold circuits for multiplication and related problems , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[40]  Vladimir Dotsenko,et al.  Invited Paper Special Section on Recent Progress in Superconductive Digital Electronics Superconductor Digital-rf Receiver Systems , 2022 .

[41]  Alex F. Kirichenko,et al.  Multi-channel time digitizing systems , 2003 .

[42]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[43]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[45]  André C. Arsenault,et al.  Towards the synthetic all-optical computer: science fiction or reality? , 2004 .

[46]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[47]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[48]  Andrew C. Walker Towards an optical computer , 1988 .

[49]  Pascal Febvre,et al.  European roadmap on superconductive electronics – status and perspectives☆ , 2010 .

[50]  D. Zinoviev,et al.  COOL-0: Design of an RSFQ subsystem for petaflops computing , 1999, IEEE Transactions on Applied Superconductivity.

[51]  T. Yamashita,et al.  Implementation of new superconducting neural circuits using coupled SQUIDs , 1994, IEEE Transactions on Applied Superconductivity.

[52]  J. Goldhar,et al.  BISTABLE OPTICAL ELEMENT AND ITS APPLICATIONS , 1969 .

[53]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[54]  Kazuaki Murakami,et al.  Proposal of a Desk-Side Supercomputer with Reconfigurable Data-Paths Using Rapid Single-Flux-Quantum Circuits , 2008, IEICE Trans. Electron..

[55]  N. Zeleznik-Le,et al.  miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia , 2012, Nature Communications.

[56]  C. Pacha,et al.  Aspects of systems and circuits for nanoelectronics , 1997, Proc. IEEE.

[57]  Wei Chen,et al.  Retargeting RSFQ cells to a submicron fabrication process , 2001 .

[58]  A. Selverston,et al.  Oscillatory neural networks. , 1985, Annual review of physiology.

[59]  Jeyavijayan Rajendran,et al.  An Energy-Efficient Memristive Threshold Logic Circuit , 2012, IEEE Transactions on Computers.

[60]  Ralf Metzler,et al.  Single DNA conformations and biological function , 2006, physics/0609139.

[61]  S. D. Smith,et al.  Optical bistability: Towards the optical computer , 1984, Nature.

[62]  S. K. Dana,et al.  Spiking and Bursting in Josephson Junction , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[63]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[64]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[65]  Lamberto Rondoni,et al.  Applications of chaos and nonlinear dynamics in engineering , 2011 .

[66]  Kai-Yeung Siu,et al.  On Optimal Depth Threshold Circuits for Multiplication and Related Problems , 1994, SIAM J. Discret. Math..

[67]  Oleg Mukhanov,et al.  Ultra high speed ADCs and DSP brings direct digital RF beam forming to MILSATCOM phased array apertures , 2009, MILCOM 2009 - 2009 IEEE Military Communications Conference.

[68]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[69]  S. Lynch,et al.  Nonlinear Optical Fibre Resonators with Applications in Electrical Engineering and Computing , 2011 .

[70]  Yi Wei,et al.  Novel universal threshold logic gate based on RTD and its application , 2011, Microelectron. J..

[71]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  Rüdiger Reischuk Can large fanin circuits perform reliable computations in the presence of faults? , 2000, Theor. Comput. Sci..

[73]  T Onomi,et al.  Superconducting Neural Network for Solving a Combinatorial Optimization Problem , 2011, IEEE Transactions on Applied Superconductivity.

[74]  Igor V. Vernik,et al.  Cryocooled Wideband Digital Channelizing RF Receiver Based on Low-Pass ADC , 2007 .

[75]  Anatoli Korkin,et al.  Nano and Giga Challenges in Microelectronics , 2003 .

[76]  Igor V. Vernik,et al.  Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC , 2007 .

[77]  O. Mukhanov,et al.  Ultimate performance of the RSFQ logic circuits , 1987 .

[78]  Patrick Crotty,et al.  Josephson junction simulation of neurons. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  T. V. Filippov,et al.  20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit , 2012 .

[80]  K. Likharev,et al.  RSFQ TECHNOLOGY: PHYSICS AND DEVICES , 2001 .

[81]  Behnam Kia,et al.  Chaos computing in terms of periodic orbits. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Jean-Marie Bilbault,et al.  Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability , 2006, Neural Networks.

[83]  Zhen Yan,et al.  Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells , 2012, Nature Communications.

[84]  K. W. Current Current-mode CMOS multiple-valued logic circuits , 1994 .

[85]  O. A. Mukhanov Superconductive single-flux quantum technology , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[86]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[87]  Pablo Varona,et al.  Heteroclinic Contours in Neural Ensembles and the Winnerless Competition Principle , 2004, Int. J. Bifurc. Chaos.

[88]  G Bard Ermentrout,et al.  Phase-response curves and synchronized neural networks , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[89]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[90]  Scott A. Brandt,et al.  NULL Convention Logic , 1997 .

[91]  P. Ashwin,et al.  Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .

[93]  Konstantin K. Likharev,et al.  Experimental study of the RSFQ logic elements , 1989 .

[94]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[95]  Rubin Wang,et al.  Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population , 2010, Neurocomputing.

[96]  M Dorojevets,et al.  8-Bit Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit , 2011, IEEE Transactions on Applied Superconductivity.

[97]  Valeriu Beiu,et al.  VLSI implementations of threshold logic-a comprehensive survey , 2003, IEEE Trans. Neural Networks.

[98]  Ad Aertsen,et al.  Dynamical Response Properties of Neocortical Neuron Ensembles: Multiplicative versus Additive Noise , 2009, The Journal of Neuroscience.