Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.

Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti(3)C(2), one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti(3)C(2) monolayer acts as a magnetic metal, while its derived Ti(3)C(2)F(2) and Ti(3)C(2)(OH)(2) in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti(3)C(2)-based hosts but well preserves its structural integrity. The bare Ti(3)C(2) monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti(3)C(2)Li(2) stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti(3)C(2) MXene a promising anode material for Li ion batteries.

[1]  Yang-Kook Sun,et al.  Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries , 2013 .

[2]  Mathieu Abel,et al.  Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. , 2011, Journal of the American Chemical Society.

[3]  R. Huggins Solid State Ionics , 1989 .

[4]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[5]  Yanchun Zhou,et al.  Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review , 2010 .

[6]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. J. Neat,et al.  Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell , 1992 .

[8]  Qing Tang,et al.  How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons , 2011 .

[9]  R. Ahuja,et al.  Electronic structure of Ti3SiC2 , 2000 .

[10]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[11]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[12]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[13]  V. Keast,et al.  Prediction of the stability of theMn+1AXnphases from first principles , 2009 .

[14]  C. Jin,et al.  Fabrication of a freestanding boron nitride single layer and its defect assignments. , 2009, Physical review letters.

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films , 1997 .

[17]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[18]  Y. Koyama,et al.  Effects of Off-Stoichiometry of LiC6 on the Lithium Diffusion Mechanism and Diffusivity by First Principles Calculations , 2010 .

[19]  Xiao Hua Yang,et al.  Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.

[20]  A. Goossens,et al.  In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .

[21]  Zhen Zhou,et al.  Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. , 2012, The journal of physical chemistry letters.

[22]  Qing Tang,et al.  Molecular Charge Transfer: A Simple and Effective Route To Engineer the Band Structures of BN Nanosheets and Nanoribbons , 2011 .

[23]  Julio Gómez-Herrero,et al.  Single layers of a multifunctional laminar Cu(I,II) coordination polymer. , 2010, Chemical communications.

[24]  Wei Chen,et al.  Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. , 2010, Journal of the American Chemical Society.

[25]  J. Nelson,et al.  Defect chemistry, surface structures, and lithium insertion in anatase TiO2. , 2006, The journal of physical chemistry. B.

[26]  Qing Tang,et al.  Tuning electronic and magnetic properties of wurtzite ZnO nanosheets by surface hydrogenation. , 2010, ACS Applied Materials and Interfaces.

[27]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[28]  Qing Tang,et al.  Single-Layer [Cu2Br(IN)2]n Coordination Polymer (CP): Electronic and Magnetic Properties, and Implication for Molecular Sensors , 2012 .

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  A. L. Ivanovskii,et al.  Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes , 2012 .

[31]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[32]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[33]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[34]  Ola Wilhelmsson,et al.  Growth and characterization of MAX-phase thin films , 2005 .

[35]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[36]  Kenji Watanabe,et al.  Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .

[37]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[38]  W. Lengauer Transition Metal Carbides, Nitrides, and Carbonitrides , 2008 .

[39]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[40]  S. D. de Leeuw,et al.  Effect of diffusion on lithium intercalation in titanium dioxide. , 2001, Physical review letters.

[41]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[42]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[43]  A. Hagfeldt,et al.  LI AND NA DIFFUSION IN TIO2 FROM QUANTUM CHEMICAL THEORY VERSUS ELECTROCHEMICAL EXPERIMENT , 1997 .

[44]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[45]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[46]  John W. Connell,et al.  Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets , 2010 .

[47]  Zhongfang Chen,et al.  SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens. , 2011, Journal of the American Chemical Society.

[48]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[49]  Wanlin Guo,et al.  "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. , 2010, Nano letters.

[50]  Ulf Jansson,et al.  The Mn+1AXn phases: Materials science and thin-film processing , 2010 .

[51]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[52]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[53]  Qing Tang,et al.  Versatile Electronic and Magnetic Properties of Corrugated V2O5 Two-Dimensional Crystal and Its Derived One-Dimensional Nanoribbons: A Computational Exploration , 2011 .

[54]  Y. Zhou,et al.  Abnormal thermal shock behavior of Ti_3SiC_2 and Ti_3AlC_2 , 2006 .

[55]  Pierre-Louis Taberna,et al.  A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode , 2012 .

[56]  S. W. Leeuw,et al.  Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles , 2002 .

[57]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.

[58]  Yoyo Hinuma,et al.  Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations , 2010 .

[59]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[60]  Hu Zhang,et al.  Oxidation behavior of bulk Ti_u3SiC_u2 at intermediate temperatures in dry air , 2006 .

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[62]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[63]  Gerbrand Ceder,et al.  First‐Principles Prediction of Insertion Potentials in Li‐Mn Oxides for Secondary Li Batteries , 1997 .

[64]  Yanchun Zhou,et al.  Recent Progress in Theoretical Prediction, Preparation, and Characterization of Layered Ternary Transition-Metal Carbides , 2009 .

[65]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .