Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions

Above-ground forest biomass is a significant variable in the terrestrial carbon budget, but is still estimated with relatively large uncertainty. Remote sensing methods can improve the characterization of the spatial distribution and estimation accuracy of biomass; in this respect, it is important to examine the potential offered by new sensors. To assess the contribution of the TanDEM-X mission, eighteen interferometric Synthetic Aperture Radar (SAR) image pairs acquired over the hemi-boreal test site of Remningstorp in Sweden were investigated. Three models were used for interpretation of TanDEM-X signatures and above-ground biomass retrieval: Interferometric Water Cloud Model (IWCM), Random Volume over Ground (RVoG) model, and a simple model based on penetration depth (PD). All use an allometric expression to relate above-ground biomass to forest height measured by TanDEM-X. The retrieval was assessed on 201 forest stands with a minimum size of 1 ha, and ranging from 6 to 267 Mg/ha (mean biomass of 105 Mg/ha) equally divided into a model training dataset and a validation test dataset. Biomass retrieved using the IWCM resulted in a Root Mean Square Error (RMSE) between 17% and 33%, depending on acquisition date and image acquisition geometry (angle of incidence, interferometric baseline, and orbit type). The RMSE in the case of the RVoG and the PD models were slightly higher. A multitemporal estimate of the above-ground biomass using all eighteen acquisitions resulted in an RMSE of 16% with R 2 = 0.93. These results prove the capability of TanDEM-X interferometric data to estimate forest aboveground biomass in the boreal zone.

[1]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[2]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[3]  Iain H. Woodhouse,et al.  Predicting backscatter-biomass and height-biomass trends using a macroecology model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[5]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[6]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[7]  A. Jalkanen,et al.  Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors , 2005 .

[8]  T. Ahti,et al.  Vegetation zones and their sections in northwestern Europe , 1968 .

[9]  Lars M. H. Ulander,et al.  Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  S. Solberg,et al.  Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .

[12]  Ljusk Ola Eriksson,et al.  The Heureka Forestry Decision Support System: An Overview , 2011, Math. Comput. For. Nat. Resour. Sci..

[13]  Maurizio Santoro,et al.  Experiences in Boreal Forest Stem Volume Estimation from Multitemporal C-Band InSAR , 2012 .

[14]  L. Ulander,et al.  Validating backscatter models for CARABAS SAR images of coniferous forests , 2008 .

[15]  Christiane Schmullius,et al.  Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval , 2007 .

[16]  Irena Hajnsek,et al.  Forest biomass estimation using polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[17]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  K. Moffett,et al.  Remote Sens , 2015 .

[19]  G. Krieger,et al.  TanDEM-X Performance Optimization , 2007 .

[20]  Hans Petersson,et al.  Biomassafunktioner för trädfaktorer av tall, gran och björk i Sverige , 1999 .

[21]  L. Dutra,et al.  Tropical Forest Measurement by Interferometric Height Modeling and P-Band Radar Backscatter , 2005, Forest Science.

[22]  Jaan Praks,et al.  LIDAR-Aided SAR Interferometry Studies in Boreal Forest: Scattering Phase Center and Extinction Coefficient at X- and L-Band , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[23]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[24]  Manfred Näslund Funktioner och tabeller för kubering av stående träd , 1940 .

[25]  Lars M. H. Ulander,et al.  Digital canopy model estimation from TanDEM-X interferometry using high-resolution lidar DEM , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[26]  Pascale Dubois-Fernandez,et al.  BIOSAR 2010 - A SAR campaign in support to the BIOMASS mission , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[27]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[28]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[29]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[30]  Irena Hajnsek,et al.  Boreal forest biomass classification with TanDEM-X , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Maurizio Santoro,et al.  Tree height influence on ERS interferometric phase in boreal forest , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Kazuo Ouchi,et al.  Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics , 2013, Remote. Sens..

[33]  Ø. Dick,et al.  SRTM DEM accuracy assessment over vegetated areas in Norway , 2007 .

[34]  H. Balzter,et al.  Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK , 2007 .

[35]  Juha Hyyppä,et al.  Backscattering properties of boreal forests at the C- and X-bands , 1994, IEEE Trans. Geosci. Remote. Sens..

[36]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[37]  L. Ulander,et al.  BIOSAR 2007:Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment , 2008 .

[38]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[39]  Gerhard Krieger,et al.  On Some Spectral Properties of TanDEM-X Interferograms Over Forested Areas , 2013, IEEE Geoscience and Remote Sensing Letters.

[40]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Terje Gobakken,et al.  Estimating spruce and pine biomass with interferometric X-band SAR , 2010 .

[42]  Johan E. S. Fransson,et al.  Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data , 2001 .