Improving the representation of legal case texts with information extraction methods

The prohibitive cost of assigning indices to textual cases is a major obstacle for the practical use of AI and Law systems supporting reasoning and arguing with cases. While progress has been made toward extracting certain facts from well-structured case texts or classifying case abstracts under Key Number concepts, these methods still do not suffice for the complexity of indexing concepts in CBR systems. In this paper, we lay out how a better example representation may facilitate classification-based indexing. Our hypotheses are that (1) abstracting from the individual actors and events in cases, (2) capturing actions in multi-word features, and (3) recognizing negation, can lead to a better representation of legal case texts for automatic indexing. We discuss how to implement these techniques with state-of-the-art NLP tools. Preliminary experimental results suggest that a combination of domain-specific knowledge and information extraction techniques can be used to generalize from the examples and derive more powerful features.

[1]  Claire Gardent,et al.  Improving Machine Learning Approaches to Coreference Resolution , 2002, ACL.

[2]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[3]  Larry Wall,et al.  Programming Perl (2nd ed.) , 1996 .

[4]  Marie-Francine Moens,et al.  Automatic Indexing and Abstracting of Document Texts , 2000, Computational Linguistics.

[5]  Raymond J. Mooney,et al.  Relational Learning of Pattern-Match Rules for Information Extraction , 1999, CoNLL.

[6]  W. Bruce Croft,et al.  Combining classifiers in text categorization , 1996, SIGIR '96.

[7]  Andrew McCallum,et al.  Learning with Scope, with Application to Information Extraction and Classification , 2002, UAI.

[8]  Larry Wall,et al.  Programming Perl , 1991 .

[9]  Edwina L. Rissland,et al.  Finding legally relevant passages in case opinions , 1997, ICAIL '97.

[10]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[11]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[12]  Andrew McCallum,et al.  Information Extraction with HMMs and Shrinkage , 1999 .

[13]  Andrew McCallum,et al.  A Note on the Unification of Information Extraction and Data Mining using Conditional-Probability, Relational Models , 2003 .

[14]  Steve Lawren Online or invisible ? , 2001 .

[15]  Rosina O. Weber Intelligent jurisprudence research: a new concept , 1999, ICAIL '99.

[16]  Nicholas Kushmerick,et al.  Wrapper Induction for Information Extraction , 1997, IJCAI.

[17]  Gerard Salton,et al.  Automatic indexing and abstracting , 1988 .

[18]  Xavier Carreras,et al.  Named Entity Extraction using AdaBoost , 2002, CoNLL.

[19]  Khalid Al-Kofahi,et al.  Anaphora resolution in the extraction of treatment history language from court opinions by partial parsing , 1999, ICAIL '99.

[20]  Ellen Riloff,et al.  Automatically Generating Extraction Patterns from Untagged Text , 1996, AAAI/IAAI, Vol. 2.

[21]  Yoram Singer,et al.  Unsupervised Models for Named Entity Classification , 1999, EMNLP.

[22]  Kevin D. Ashley,et al.  Using Machine Learning for Assigning Indices to Textual Cases , 1997, ICCBR.

[23]  Christiane Fellbaum,et al.  Using Wordnet for Text Retrieval , 1998 .

[24]  Jon M. Kleinberg,et al.  Bursty and Hierarchical Structure in Streams , 2002, Data Mining and Knowledge Discovery.

[25]  Paul Thompson,et al.  Name Recognition and Retrieval Performance , 1999 .

[26]  Kevin D. Ashley,et al.  Toward adding knowledge to learning algorithms for indexing legal cases , 1999, ICAIL '99.

[27]  Paul R. Cohen,et al.  Empirical methods for artificial intelligence , 1995, IEEE Expert.

[28]  James F. Allen Natural language understanding (2nd ed.) , 1995 .

[29]  Tomek Strzalkowski Natural Language Information Retrieval , 1995, Inf. Process. Manag..

[30]  Dan Klein,et al.  Named Entity Recognition with Character-Level Models , 2003, CoNLL.

[31]  Vincent A. W. M. M. Aleven,et al.  Teaching case-based argumentation through a model and examples , 1997 .

[32]  Jeffrey E. F. Friedl Mastering Regular Expressions , 1997 .

[33]  Wendy G. Lehnert,et al.  Corpus-Driven Knowledge Acquisition for Discourse Analysis , 1994, AAAI.

[34]  Dmitry Zelenko,et al.  Kernel Methods for Relation Extraction , 2002, J. Mach. Learn. Res..

[35]  L. Karl Branting,et al.  Reasoning with Rules and Precedents: A Computational Model Of Legal Analysis , 1999 .

[36]  L. Karl Branting,et al.  Reasoning with Rules and Precedents , 2000, Springer Netherlands.

[37]  Henry Prakken,et al.  Modelling Reasoning with Precedents in a Formal Dialogue Game , 1998 .

[38]  Kevin D. Ashley Modeling legal argument - reasoning with cases and hypotheticals , 1991, Artificial intelligence and legal reasoning.

[39]  Vincent Aleven,et al.  Reasoning Symbolically About Partially Matched Cases , 1997, IJCAI.

[40]  Mark Craven,et al.  Representing Sentence Structure in Hidden Markov Models for Information Extraction , 2001, IJCAI.

[41]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[42]  Richard M. Schwartz,et al.  Nymble: a High-Performance Learning Name-finder , 1997, ANLP.

[43]  J. I. Rodale The Synonym Finder , 1958 .

[44]  Raymond J. Mooney,et al.  A Mutually Beneficial Integration of Data Mining and Information Extraction , 2000, AAAI/IAAI.

[45]  Craig A. Knoblock,et al.  STALKER: Learning Extraction Rules for Semistructured, Web-based Information Sources * , 1998 .

[46]  C. Lee Giles,et al.  Digital Libraries and Autonomous Citation Indexing , 1999, Computer.

[47]  Ellen Riloff,et al.  Little words can make a big difference for text classification , 1995, SIGIR '95.

[48]  Isabelle Moulinier,et al.  Computer-Assisted Classification of Legal Abstracts , 1999, IDA.

[49]  Stephen Soderland,et al.  Learning to Extract Text-Based Information from the World Wide Web , 1997, KDD.

[50]  Tom M. Mitchell,et al.  Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.

[51]  James F. Allen Natural language understanding , 1987, Bejnamin/Cummings series in computer science.

[52]  Paul Thompson Automatic categorization of case law , 2001, ICAIL '01.