A sharp threshold for random graphs with a monochromatic triangle in every edge coloring
暂无分享,去创建一个
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] S. Janson,et al. Upper tails for subgraph counts in random graphs , 2004 .
[3] Vojtech Rödl,et al. Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.
[4] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[5] Vojtech Rödl,et al. Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..
[6] D. Achlioptas,et al. A sharp threshold for k-colorability , 1999 .
[7] Michael Krivelevich,et al. Sharp thresholds for certain Ramsey properties of random graphs , 2000, Random Struct. Algorithms.
[8] B. Rothschild,et al. Every graph is contained in a sparsest possible balanced graph , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] P. Erdos,et al. On the evolution of random graphs , 1984 .
[10] Yoshiharu Kohayakawa,et al. Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .
[11] Tomasz Luczak. On triangle-free random graphs , 2000, Random Struct. Algorithms.
[12] Vojtech Rödl,et al. A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..
[13] Tomasz Łuczak,et al. On triangle-free random graphs , 2000 .
[14] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[15] Andrzej Rucinski,et al. Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.
[16] B. Bollobás. The evolution of random graphs , 1984 .
[17] Béla Bollobás,et al. Threshold functions , 1987, Comb..
[18] Ehud Friedgut,et al. A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.
[19] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[20] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[21] Andrzej Rucinski,et al. Two variants of the size Ramsey number , 2005, Discuss. Math. Graph Theory.
[22] Andrzej Ruciński,et al. Rado Partition Theorem for Random Subsets of Integers , 1997 .
[23] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[24] Yoshiharu Kohayakawa,et al. Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.
[25] Vojtech Rödl,et al. Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.
[26] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[27] S. Ross. A random graph , 1981 .
[28] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[29] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[30] Yoshiharu Kohayakawa,et al. Ramsey Games Against a One-Armed Bandit , 2003, Comb. Probab. Comput..
[31] E. Friedgut,et al. Sharp thresholds of graph properties, and the -sat problem , 1999 .
[32] Michael Krivelevich,et al. Sharp Thresholds for Ramsey Properties of Random Graphs , 1999 .
[33] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[34] Vojtech Rödl,et al. Regularity properties for triple systems , 2003, Random Struct. Algorithms.