Using Query-Driven Simulations for Querying Outcomes of Business Processes

When decision makers want to know outcomes of business processes in their organizations,they often use simulations to do this. This paper describes how a new Query-Driven Simulation(QDS) approach can be used by decision makers to obtain information about future outcomesof business processes in a more declarative, flexible, and interactive way than the traditionalapproach of running simulations and then gathering statistics about simulation outcomes. Thepaper also describes the types of questions decision makers ask about outcomes of businessprocesses and studies how easy it is to express these questions in terms of an SQL-like querylanguage SimQL designed for Query-Driven Simulations. It also identifies the types of applicationsthat are especially well-suited for QDS. Finally, the paper describes the Query-DrivenSimulation Modeling Lifecycle and how QDS provides a feedback loop in the model developmentprocess.

[1]  Victor E. Middleton,et al.  Proceedings of the 1993 Winter Simulation Conference , 1993 .

[2]  A. J. Barr,et al.  SAS user's guide , 1979 .

[3]  Alexander Tuzhilin,et al.  Cassandra+: A System for Doing Query-Driven Simulations , 1993 .

[4]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[5]  Paul G. Ranky,et al.  Computer integrated manufacturing , 1986 .

[6]  Alexander Tuzhilin,et al.  Applications of temporal Databases to Knowledge-based Simulations , 1993, Temporal Databases.

[7]  C. J. Date A Guide to the SQL Standard , 1987 .

[8]  Jerry Banks,et al.  The Simulator: New Member of the Simulation Family , 1991 .

[9]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[10]  Alfred V. Aho,et al.  Optimal partial-match retrieval when fields are independently specified , 1979, ACM Trans. Database Syst..

[11]  Ramez Elmasri,et al.  TSQL2 language specification , 1994, SGMD.

[12]  Richard T. Snodgrass,et al.  A relational approach to monitoring complex systems , 1988, TOCS.

[13]  Melanie L. Lenard A prototype implementation of a model management system for discrete-event simulation models , 1993, WSC '93.

[14]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[15]  James M. Pruett,et al.  MOSES: Manufacturing Organization Simulation and Evaluation System , 1990, Simul..

[16]  Benn R. Konsynski,et al.  Information systems and decision processes , 1992 .

[17]  James Clifford,et al.  A Temporal Relational Algebra as a Basis for Temporal Relational Completeness , 1990 .

[18]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[19]  P. P. Schoderbek Management systems , 1971 .

[20]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[21]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[22]  Richard T. Snodgrass,et al.  The temporal query language TQuel , 1987, TODS.

[23]  Robert W. Blanning,et al.  Model management systems : An overview , 1993, Decis. Support Syst..

[24]  Arthur M. Geoffrion,et al.  An Introduction to Structured Modeling , 1987 .

[25]  Shamkant B. Navathe,et al.  TSQL: A Language Interface for History Databases , 1987, Temporal Aspects in Information Systems.

[26]  Kenneth A. Loparo,et al.  Artificial intelligence, simulation & modeling , 1989 .

[27]  Richard T. Snodgrass,et al.  The Temporal Query Language TQuel , 1987, ACM Trans. Database Syst..

[28]  John A. Miller,et al.  Query driven simulation using SIMODULA , 1989, Annual Simulation Symposium.