The eccentric connectivity index of nanotubes and nanotori

Let G be a molecular graph. The eccentric connectivity index @x^c(G) is defined as @x^c(G)[email protected]?"u"@?"V"("G")deg"G(u)@e"G(u), where deg"G(u) denotes the degree of vertex u and @e"G(u) is the largest distance between u and any other vertex v of G. In this paper exact formulas for the eccentric connectivity index of TUC"4C"8(S) nanotube and TC"4C"8(S) nanotorus are given.

[1]  Ali Reza Ashrafi,et al.  Computing the Wiener Index of a TUC4C8(S) Nanotorus , 2007 .

[2]  Dieter Rautenbach,et al.  Wiener index versus maximum degree in trees , 2002, Discret. Appl. Math..

[3]  Ali Reza Ashrafi,et al.  Padmakar-Ivan Index of TUC 4 C 8 (S) Nanotubes , 2006 .

[4]  Heping Zhang,et al.  Hosoya polynomials of TUC4C8(S) nanotubes , 2009 .

[5]  Zhiping Xu Energy Dissipation in the Double-Walled Carbon Nanotube Based Mechanical Oscillators , 2008 .

[6]  Frank Harary,et al.  Graph Theory , 2016 .

[7]  Harish Dureja,et al.  Superaugmented eccentric connectivity indices: new-generation highly discriminating topological descriptors for QSAR/QSPR modeling , 2007, Medicinal Chemistry Research.

[8]  M. Arezoomand,et al.  A mathematical model for TUC4C8(S) nanotubes and their symmetry groups , 2009 .

[9]  Ante Graovac,et al.  Leapfrog and related operations on toroidal fullerenes , 2003 .

[10]  A. K. Madan,et al.  Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies , 1997, J. Chem. Inf. Comput. Sci..

[11]  Doslic Tomislav,et al.  Eccentric Connectivity Index: Extremal Graphs and Values , 2010 .

[12]  M. Diudea,et al.  Toroidal Fullerenes from Square Tiled Tori , 2001 .

[13]  Ali Iranmanesh,et al.  COMPUTATION OF THE FIRST EDGE-WIENER INDEX OF TUC4C8(S) NANOTUBE , 2009 .

[14]  M. Diudea,et al.  CI INDEX IN TUBULAR NANOSTRUCTURES , 2007 .

[15]  Vipin Kumar,et al.  Predicting anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index , 2004, Journal of molecular modeling.

[16]  A. Ashrafi,et al.  The eccentric connectivity index of $TUC_4C_8(R)$ nanotubes , 2011 .

[17]  Ali Reza Ashrafi,et al.  An exact expression for the wiener index of a TUC4C8(R) nanotorus , 2007 .

[18]  Abbas Heydari,et al.  Szeged index of TUC4C8(S) nanotubes , 2009, Eur. J. Comb..

[19]  A. K. Madan,et al.  Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener's Index with Anti-inflammatory Activity , 2002 .

[20]  I. Gutman,et al.  Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.

[21]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[22]  Bo Zhou,et al.  ON ECCENTRIC CONNECTIVITY INDEX , 2010 .

[23]  Michel Deza,et al.  Geometry of Chemical Graphs: Polycycles and Two-faced Maps , 2008 .