RESEARCH RE: SEARCH & RE-SEARCH

Search algorithms are often categorized by their node expansion strategy. One option is the depth-first strategy, a simple backtracking strategy that traverses the search space in the order in which successor nodes are generated. An alternative is the best-first strategy, which was designed to make it possible to use domain-specific heuristic information. By exploring promising parts of the search space first, best-first algorithms are usually more efficient than depth-first algorithms. In programs that play minimax games such as chess and checkers, the efficiency of the search is of crucial importance. Given the success of best-first algorithms in other domains, one would expect them to be used for minimax games too. However, all high-performance game-playing programs are based on a depth-first algorithm. This study takes a closer look at a depth-first algorithm, Alpha-Beta, and a best-first algorithm, SSS*. The prevailing opinion on these algorithms is that SSS* offers the potential for a more efficient search, but that its complicated formulation and exponential memory requirements render it impractical. The theoretical part of this work shows that there is a surprisingly straightforward link between the two algorithms—for all practical purposes, SSS* is a special case of Alpha-Beta. Subsequent empirical evidence proves the prevailing opinion on SSS* to be wrong: it is not a complicated algorithm, it does not need too much memory, and it is also not more efficient than depth-first search. Over the years, research on Alpha-Beta has yielded many enhancements, such as transposition tables and minimal windows with re-searches, that are responsible for the success of depth-first minimax search. The enhancements have made it possible to use a depth-first procedure to expand nodes in a best-first sequence. Based on these insights, a new algorithm is presented, MTD(ƒ), which out-performs both SSS* and NegaScout, the Alpha-Beta variant of choice by practitioners. In addition to best-first search, other ways for improvement of minimax search algorithms are investigated. The tree searched in Alpha-Beta’s best case is usually considered to be equal to the minimal tree that has to be searched by any algorithm in order to find and prove the minimax value. We show that in practice this assumption is not valid. For non-uniform trees, the real minimal tree—or rather, graph—that proves the minimax value is shown to be significantly smaller than Alpha-Beta’s best case. Thus, there is more room for improvement of full-width minimax search than is generally assumed.

[1]  George Charles Stockman,et al.  A problem-reduction approach to the linguistic analysis of waveforms. , 1977 .

[2]  Frederic Friedel,et al.  Pentium Genius Beats Kasparov: A Report on the Intel Speed Chess Grand Prix in London , 1994, J. Int. Comput. Games Assoc..

[3]  Philip Hans Franses Model selection and seasonality in time series , 1991 .

[4]  Ralf Peeters,et al.  System identification based on riemannian geometry : theory and algorithms , 1993 .

[5]  Hans J. Berliner,et al.  Backgammon Computer Program Beats World Champion , 1980 .

[6]  Allen Newell,et al.  Chess-Playing Programs and the Problem of Complexity , 1958, IBM J. Res. Dev..

[7]  E. Eggink,et al.  A Symmetric Approach To The Labor Market , 1990 .

[8]  Donald F. Beal,et al.  A Generalised Quiescence Search Algorithm , 1990, Artif. Intell..

[9]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[10]  Siem Jan Koopman,et al.  Diagnostic checking and intra-daily effects in time series models , 1992 .

[11]  C. Posthoff,et al.  Search with fuzzy numbers , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[12]  D. R. Dannenburg Basic actuarial credibility models - evaluations and extensions , 1996 .

[13]  Volkert J. Batelaan Organizational Culture and Strategy: A Study of Cultural Influences on the Formulation of Strategies, Goals, and Objectives in Two Companies , 1993 .

[14]  Marian Dingena The Creation of Meaning in Advertising: Interaction of Figurative Advertising and Individual Differences in Processing Styles , 1994 .

[15]  Dana S. Nau,et al.  A general branch-and-bound formulation for and/or graph and game tree search , 1988 .

[16]  Feng-hsiung Hsu Large scale parallelization of alpha-beta search: an algorithmic and architectural study , 1989 .

[17]  Cees van Beers Exports of developing countries : differences between South-South and South-North trade and their implications for economic development , 1991 .

[18]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[19]  Judea Pearl,et al.  On the Nature of Pathology in Game Searching , 1983, Artif. Intell..

[20]  Michel de Lange,et al.  Essays on the theory of financial intermediation : market imperfections, the allocation of credit, deposit insurance and the transmission of external shocks , 1992 .

[21]  A. Plaat An Algorithm Faster than NegaScout and SSS * in Practice , 1998 .

[22]  W. E. Kuiper Farmers, Prices and Rational Expectations , 1995 .

[23]  René Belderbos Strategic trade policy and multinational enterprises : essays on trade and investment by Japanese electronics firms , 1994 .

[24]  Duane Szafron,et al.  A Re-Examination of Brute-Force Search , 1993 .

[25]  Bruce W. Ballard,et al.  The *-Minimax Search Procedure for Trees Containing Chance Nodes , 1983, Artif. Intell..

[26]  Jonathan Schaeffer,et al.  Best-First Fixed-Depth Game-Tree Search in Practice , 1995, IJCAI.

[27]  Jonathan Schaeffer,et al.  Efficiently Searching the 15-Puzzle , 1994 .

[28]  Kai-Fu Lee,et al.  The Development of a World Class Othello Program , 1990, Artif. Intell..

[29]  John Philip Fishburn Analysis of speedup in distributed algorithms , 1984 .

[30]  Mark G. Brockington,et al.  A Taxonomy of Parallel Game-Tree Search Algorithms , 1996, J. Int. Comput. Games Assoc..

[31]  Jonathan Schaeffer,et al.  The History Heuristic and Alpha-Beta Search Enhancements in Practice , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Jean-Christophe Weill The ABDADA Distributed Minimax-Search Algorithm , 1996, J. Int. Comput. Games Assoc..

[33]  Wim Swaan Behavior and institutions under economic reform : price regulation and market behaviour in Hungary , 1993 .

[34]  K. Thompson,et al.  BELLE: chess hardware , 1988 .

[35]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[36]  Shuangzhe Liu Contributions to matrix calculus and applications in econometrics , 1996 .

[37]  H. M. Kat The Efficiency of Dynamic Trading Strategies in Imperfect Markets , 1993 .

[38]  Jonathan Schaeffer,et al.  New advances in Alpha-Beta searching , 1996, CSC '96.

[39]  Claude Amiguet Contrôleurs distribués pour la programmation heuristique , 1991 .

[40]  Jonathan Schaeffer,et al.  CHINOOK: The World Man-Machine Checkers Champion , 1996, AI Mag..

[41]  Jonathan Schaeffer,et al.  Experiments in Search and Knowledge , 1986, J. Int. Comput. Games Assoc..

[42]  C. Gorter,et al.  The dynamics of unemployment and vacancies on regional labour markets , 1991 .

[43]  David A. McAllester Conspiracy Numbers for Min-Max Search , 1988, Artif. Intell..

[44]  J. A. Vijlbrief Unemployment insurance and the Dutch labour market , 1992 .

[45]  Hendrik P. van Dalen Economic Policy in a Demographically Divided World , 1991 .

[46]  Thomas S. Anantharaman,et al.  A Statistical Study of Selective Min-Max Search in Computer Chess , 1991, J. Int. Comput. Games Assoc..

[47]  E. Baum How a Bayesian Approaches Games Like Chess , 1993 .

[48]  A. R. Thurik,et al.  Price-cost margins in Dutch manufacturing , 1992 .

[49]  George C. Stockman,et al.  A Minimax Algorithm Better than Alpha-Beta? , 1979, Artif. Intell..

[50]  Romeo Çollaku,et al.  Deep thought , 1991, Nature.

[51]  Jonathan Schaeffer,et al.  Conspiracy Numbers , 1990, Artif. Intell..

[52]  H. Jaap van den Herik,et al.  Replacement Schemes for Transposition Tables , 1994, J. Int. Comput. Games Assoc..

[53]  A. Bernstein,et al.  A chess playing program for the IBM 704 , 1899, IRE-ACM-AIEE '58 (Western).

[54]  Peter W. Frey,et al.  Chess Skill in Man and Machine , 1984, Springer New York.

[55]  Jaap Barendregt The Dutch money purge : the monetary consequences of German occupation and their redress after liberation, 1940-1952 , 1993 .

[56]  Yvonne M. van Everdingen,et al.  Adoption and diffusion of the European Currency Unit : an empirical study among European companies , 1995 .

[57]  Oliver Vornberger,et al.  Distributed Game-Tree Search , 1989, J. Int. Comput. Games Assoc..

[58]  Vipin Kumar,et al.  Parallel Branch-and-Bound Formulations for AND/OR Tree Search , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  A. H. Sharif Life insurance, a non-life approach - B. M. Klinge. , 1996 .

[60]  Rudy Van Zijp AUSTRIAN AND NEW CLASSICAL BUSINESS CYCLE THEORIES , 1993 .

[61]  Bertholt Leeftink The Desirability of Currency Unification: Theory and Some Evidence , 1995 .

[62]  Lourens Broersma The relation between unemployment and interest rate : empirical evidence and theoretical justification , 1992 .

[63]  Laveen N. Kanal,et al.  A Hybrid SSS*/Alpha-Beta Algorithm for Parallel Search of Game Trees , 1985, IJCAI.

[64]  M. Smink Corporate Risk Management: A Multi-factor Approach , 1995 .

[65]  Jonathan Schaeffer,et al.  Exploiting Graph Properties of Game Trees , 1996, AAAI/IAAI, Vol. 1.

[66]  Nils J. Nilsson,et al.  Problem-solving methods in artificial intelligence , 1971, McGraw-Hill computer science series.

[67]  A. I. Barros Discrete and Fractional Programming Techniques for Location Models , 1998 .

[68]  Marcel Canoy Bertrand meets the fox and the owl : essays on the theory of price competition , 1993 .

[69]  A. Reinejeld,et al.  Time-Efficient State-Space Search , 1995, J. Int. Comput. Games Assoc..

[70]  Jonathan Schaeffer,et al.  SSS* = α-β + TT , 1994 .

[71]  Wim Pijls,et al.  SSS*-Like Algorithms in Constrained Memory , 1993, J. Int. Comput. Games Assoc..

[72]  Bradley C. Kuszmaul,et al.  Synchronized MIMD computing , 1994 .

[73]  Subir Bhattacharya,et al.  Experimenting with Revisits in Game Tree Search , 1995, IJCAI.

[74]  Dana S. Nau,et al.  Pathology on Game Trees Revisited, and an Alternative to Minimaxing , 1983, Artif. Intell..

[75]  Hermann Kaindl,et al.  How to Use Limited Memory in Heuristic Search , 1995, IJCAI.

[76]  Hans-Joachim Kraas Zur Parallelisierung des SSS*-Algorithmus , 1990 .

[77]  Frederic Friedel,et al.  The Intel World Chess Express Challenge , 1994, J. Int. Comput. Games Assoc..

[78]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[79]  Marjan W. Hofkes Modelling and computation of general equilibrium , 1991 .

[80]  Wim Pijls,et al.  Searching Informed Game Trees , 1992, ISAAC.

[81]  Hans J. Berliner,et al.  Chess as problem solving: the development of a tactics analyzer. , 1975 .

[82]  Jonathan Schaeffer,et al.  Distributed Game-Tree Searching , 1989, J. Parallel Distributed Comput..

[83]  T. A. Marsland,et al.  A Review of Game-Tree Pruning , 1986, J. Int. Comput. Games Assoc..

[84]  Jonathan Schaeffer,et al.  Perspectives on Falling from Grace , 1989, J. Int. Comput. Games Assoc..

[85]  Gerard Maurice Baudet,et al.  The design and analysis of algorithms for asynchronous multiprocessors. , 1978 .

[86]  Jeannette Capel Exchange rates and strategic decisions of firms , 1993 .

[87]  Rajjan Shinghal,et al.  An empirical comparison of pruning strategies in game trees , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[88]  Jean-Christophe Weill The NegaC* Search , 1992, J. Int. Comput. Games Assoc..

[89]  Ole Hesselager Ordering of risks. Theory and actuarial applications. : van Heerwaarden Angela, Tinbergen Institute, Research Series, Amsterdam, 1991, 159 pp. , 1994 .

[90]  G. M. Adelson-Velskiy,et al.  Some Methods of Controlling the Tree Search in Chess Programs , 1975, Artif. Intell..

[91]  E. F. M Wubben Markets, Uncertainty and Decision-Making: A History of the Introduction of Uncertainty into Economics , 1994 .

[92]  David J. Slate,et al.  Chess 4.5-The Northwestern University chess program , 1988 .

[93]  Tineke Fokkema,et al.  Residential Moving Behaviour of the Elderly: An Explanatory Analysis for the Netherlands , 1996 .

[94]  W. Hassink,et al.  Worker flows and the employment adjustment of firms : an empirical investigation , 1996 .

[95]  Judea Pearl,et al.  A Minimax Algorithm Better Than Alpha-Beta? Yes and No , 1983, Artif. Intell..

[96]  V. Rich Personal communication , 1989, Nature.

[97]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[98]  Murray Campbell,et al.  Singular Extensions: Adding Selectivity to Brute-Force Searching , 1990, Artif. Intell..

[99]  Alexander Reinefeld,et al.  Heuristic Search in One and Two Player Games , 1993 .

[100]  Hans J. Berliner,et al.  The B* Tree Search Algorithm: A Best-First Proof Procedure , 1979, Artif. Intell..

[101]  Albert Jolink The Evolutionist Economics of Leon Walras , 1996 .

[102]  Arnoud Lagendijk The internationalisation of the Spanish automobile industry and its regional impact : the emergence of a growth periphery , 1993 .

[103]  Jeroen C. A. Potjes Empirical studies in Japanese retailing , 1993 .

[104]  F. Hsu,et al.  A Grandmaster Chess Machine , 1990 .

[105]  Aske Plaat,et al.  Solution Trees as a Basis for Game-Tree Search , 1994, J. Int. Comput. Games Assoc..

[106]  Jonathan Schaeffer,et al.  Low Overhead Alternatives to SSS , 1987, Artif. Intell..

[107]  Alexander Reinefeld,et al.  Spielbaum-Suchverfahren , 1989, Informatik-Fachberichte.

[108]  W. H. L. M. Pijls Shortest Paths and Game Trees , 1992, J. Int. Comput. Games Assoc..

[109]  Bradley C. Kuszmaul,et al.  Massively Parallel Chess , 1994 .

[110]  K. Coplan A SPECIAL-PURPOSE MACHINE FOR AN IMPROVED SEARCH ALGORITHM FOR DEEP CHESS COMBINATIONS , 1982 .

[111]  O. H. Swank Policy makers, voters, and optimal control : estimation of the preferences behind monetary and fiscal policy in the United States , 1990 .

[112]  David Levy,et al.  Computer Chess Compendium , 1988, Springer New York.

[113]  R. H. van het Kaar Medezeggenschap bij fusie en ontvlechting , 1993 .

[114]  Andre Lucas Outlier robust unit root analysis , 1996 .

[115]  Amitava Bagchi,et al.  Searching Game Trees in Parallel Using SSS , 1989, IJCAI.

[116]  Burkhard Monien,et al.  A Fully Distributed Chess Program , 1991 .

[117]  Judea Pearl,et al.  The solution for the branching factor of the alpha-beta pruning algorithm and its optimality , 1982, CACM.

[118]  G. Biessen East European foreign trade and system changes , 1996 .

[119]  Amitava Bagchi,et al.  A General Framework for Minimax Search in Game Trees , 1994, Inf. Process. Lett..

[120]  Shlomo Zilberstein Optimizing Decision Quality with Contract Algorithms , 1995, IJCAI.

[121]  Jos Verbeek Studies on economic growth theory : the role of imperfections and externalities , 1993 .

[122]  Amitava Bagchi,et al.  A Faster Alternative to SSS* with Extension to Variable Memory , 1993, Inf. Process. Lett..

[123]  A. J. Palay Searching with probabilities , 1985 .

[124]  Ronald L. Rivest,et al.  Game Tree Searching by Min/Max Approximation , 1987, Artif. Intell..

[125]  K. Thompson,et al.  COMPUTER CHESS STRENGTH , 1982 .

[126]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[127]  Ivan Bratko,et al.  THE BRATKO-KOPEC EXPERIMENT: A COMPARISON OF HUMAN AND COMPUTER PERFORMANCE IN CHESS , 1982 .

[128]  Jonathan Schaeffer,et al.  Information Acquisition in Minimal Window Search , 1985, IJCAI.

[129]  Alexander Reinefeld,et al.  Enhanced Iterative-Deepening Search , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[130]  James R. Slagle,et al.  Experiments With Some Programs That Search Game Trees , 1969, JACM.

[131]  R. Korf,et al.  Best-First Minimax Search , 1996, Artif. Intell..

[132]  Ching-Fang Liaw,et al.  A Bibliography of Heuristic Search Research Through 1992 , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[133]  Donald E. Eastlake,et al.  The Greenblatt chess program , 1967, AFIPS '67 (Fall).

[134]  Claude E. Shannon,et al.  Programming a computer for playing chess , 1950 .

[135]  Richard E. Korf,et al.  Iterative-Deepening-A*: An Optimal Admissible Tree Search , 1985, IJCAI.

[136]  L. V. Allis,et al.  Searching for solutions in games and artificial intelligence , 1994 .

[137]  Frank A. G. Windmeijer Goodness of fit in linear and qualitative-choice models , 1992 .

[138]  Robert M. de Jong Asymptotic theory of expanding parameter space methods and data dependence in econometrics , 1993 .

[139]  Hermann Kaindl,et al.  Minimax Search Algorithms With and Without Aspiration Windows , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[140]  R. Verburg,et al.  The two faces of interest : the problem of order and the origins of political economy and sociology as distinctive fields of inquiry in the Scottish enlightenment , 1991 .

[141]  Marcel Boumans,et al.  A Case of limited physics transfer : Jan Tinbergen's resources for re-shaping economics , 1992 .

[142]  Giovanni Manzini,et al.  BIDA: An Improved Perimeter Search Algorithm , 1995, Artif. Intell..

[143]  T. Anthony Marsland,et al.  Parallel Search of Strongly Ordered Game Trees , 1982, CSUR.

[144]  Michael Buro,et al.  Techniken für die Bewertung von Spielsituationen anhand von Beispielen , 1994 .

[145]  Fred Popowich,et al.  Parallel Game-Tree Search , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[146]  Murray Campbell,et al.  Experiments with the Null-Move Heuristic , 1990 .

[147]  Tony Marsland,et al.  Phased state space search , 1986 .

[148]  Toshihide Ibaraki Game Solving Procedure H* Is Unsurpassed , 1987 .

[149]  B. Roorda,et al.  Global Total Least Squares - A Method for the Construction of Open Approximate Models from Vector Time Series (Ph.D. Thesis) , 1995 .

[150]  Alexander Reinefeld,et al.  An Improvement to the Scout Tree Search Algorithm , 1983, J. Int. Comput. Games Assoc..

[151]  Richard E. Korf,et al.  Best-First Minimax Search: Othello Results , 1994, AAAI.

[152]  Gerrit Antonides,et al.  The process of reaching an agreement in second-hand markets for consumer durables , 1997 .

[153]  T. Anthony Marsland,et al.  A Comparison of Minimax Tree Search Algorithms , 1983, Artif. Intell..

[154]  Jonathan Schaeffer,et al.  A World Championship Caliber Checkers Program , 1992, Artif. Intell..

[155]  Jos W. H. M. Uiterwijk The Kasparov - Deep Blue Match , 1996, J. Int. Comput. Games Assoc..

[156]  Chris McConnell,et al.  B Probability Based Search , 1996, Artif. Intell..

[157]  Jonathan Schaeffer,et al.  Speculative Computing , 1987, J. Int. Comput. Games Assoc..

[158]  Maarten Lindeboom Empirical duration models for the labour market , 1992 .

[159]  Wim Pijls,et al.  Another View on the SSS* Algorithm , 1990, SIGAL International Symposium on Algorithms.

[160]  H. P. Boswijk,et al.  Cointegration, identification and exogeneity: inference in structural error correction models , 1992 .

[161]  Rainer Feldmaus,et al.  Spielbaumsuche mit massiv parallelen Systemen , 1993 .

[162]  James B. H. Kwa,et al.  BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm , 1989, Artif. Intell..

[163]  E. A. M. Bulder,et al.  The social economics of old age : strategies to maintain income in later life in the Netherlands, 1880-1940 , 1993 .

[164]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[165]  Judea Pearl,et al.  Asymptotic Properties of Minimax Trees and Game-Searching Procedures , 1980, Artif. Intell..

[166]  J. Bergh,et al.  Dynamic models for sustainable development , 1991 .

[167]  Vipin Kumar,et al.  A General Branch and Bound Formulation for Understanding and Synthesizing And/Or Tree Search Procedures , 1983, Artif. Intell..

[168]  H. J. van den Herik,et al.  Computerschaak, schaakwereld en kunstmatige intelligentie , 1983 .

[169]  Toshihide Ibaraki,et al.  Generalization of Alpha-Beta and SSS Search Procedures , 1986, Artif. Intell..

[170]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[171]  T. M. Nicholson,et al.  “All the right moves” , 1989, TRI-Ada '88.