Performance analysis of self-electro-optic-effect-device-based (SEED-based) smart-pixel arrays used in data sorting.

The performance factors associated with self-electro-optic-effect-device-(SEED-) based smart-pixel arrays are analyzed in terms of semiconductor technology and pixel complexity. The sorting task is chosen as a practical example. Complementary metal-oxide semiconductor (CMOS)-SEED 2 × 2 self-routing nodes operated with quasi-cw-mode lasers are shown to provide the maximum processing power and on- or off-chip communication rate. The need for new front-end amplifiers for the smart-pixel technology is emphasized.

[1]  T J Cloonan,et al.  Shuffle-equivalent interconnection topologies based on computer-generated binary-phase gratings. , 1994, Applied optics.

[2]  J F Snowdon,et al.  Tolerance analysis of cascaded self-electro-optic-effect-device arrays. , 1994, Applied optics.

[3]  N. Tan,et al.  Low-power chip-to-chip communication circuits , 1994 .

[4]  Anthony L. Lentine,et al.  Experimental sensitivity studies of diode-clamped FET-SEED smart-pixel optical receivers , 1994 .

[5]  Gustaaf Borghs,et al.  Differential optical PnpN switch operating at 16 MHz with 250‐fJ optical input energy , 1994 .

[6]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[7]  Song Yu,et al.  Implementations of smart pixels for optoelectronic processors and interconnection systems. II. SEED-based technology and comparison with optoelectronic gates , 1993 .

[8]  A. L. Lentine,et al.  S-SEED switching characteristics , 1994 .

[9]  R A Athale,et al.  Sorting with optical compare-and-exchange modules. , 1988, Applied optics.

[10]  Chris R. Jesshope,et al.  The Implementation of Fast Radix 2 Transforms on Array Processors , 1980, IEEE Transactions on Computers.

[11]  Andrew C. Walker,et al.  Improvements in strain‐balanced InGaAs/GaAs optical modulators for 1047‐nm operation , 1994 .

[12]  A L Lentine,et al.  Field-effect-transistor self-electro-optic-effect-device (FET-SEED) electrically addressed differential modulator array. , 1994, Applied optics.

[13]  W. S. Marcus,et al.  A CMOS Batcher and Banyan chip set for B-ISDN packet switching , 1990 .

[14]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[15]  D. Miller,et al.  Optimization of absorption in symmetric self-electrooptic effect devices: a systems perspective , 1991 .

[16]  Mark Ingels,et al.  A CMOS 18 THz/spl Omega/ 248 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links , 1994 .

[17]  A. W. Yu,et al.  1047 nm laser diode master oscillator Nd:YLF power amplifier laser system , 1993 .

[18]  Anthony L. Lentine,et al.  Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels , 1993 .

[19]  B S Wherrett,et al.  Perfect-shuffle interconnected bitonic sorter: optoelectronic design. , 1995, Applied optics.

[20]  Charles W. Stirk Cost models of components for free-space optically interconnected systems , 1993 .

[21]  Ashok V. Krishnamoorthy,et al.  Performance comparison between optoelectronic and VLSI multistage interconnection networks , 1991 .

[22]  T J Cloonan,et al.  Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays. , 1994, Applied optics.

[23]  T. K. Woodward,et al.  Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators , 1994 .

[24]  G. D. Boyd,et al.  Wavelength dependence of saturation and thermal effects in multiple quantum well modulators , 1993 .

[25]  David A. B. Miller,et al.  Quantum well carrier sweep out: relation to electroabsorption and exciton saturation , 1991 .

[26]  A. V. Krishnamoorthy,et al.  Design trade-offs in optoelectronic parallel processing systems using smart-SLMs , 1992 .

[27]  T. K. Woodward,et al.  Optical energy considerations for diode-clamped smart pixel optical receivers , 1994 .

[28]  M. Q. Kearly,et al.  Optoelectronic component arrays for optical interconnection of circuits and subsystems , 1991 .

[29]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[30]  I. A. Shcherbakov,et al.  Non-linear population processes of Er3+ laser levels in chromium-doped garnet crystals , 1990 .

[31]  P. Marchand,et al.  Grain-size considerations for optoelectronic multistage interconnection networks. , 1992, Applied optics.

[32]  T. K. Woodward,et al.  Experimental studies of proton-implanted GaAs-AlGaAs multiple-quantum-well modulators for low-photocurrent applications , 1994 .

[33]  J. E. Henry,et al.  Optical logic using electrically connected quantum well PIN diode modulators and detectors. , 1990, Applied optics.

[34]  A L Lentine,et al.  Wavelength optimization of quantum-well modulators in smart pixels. , 1995, Applied optics.

[35]  P. Facq,et al.  Refractive-index profile influences on mode coupling effects at optical fiber splices and connectors , 1993 .