The Carnegie Chicago Hubble Program: the mid-infrared colours of Cepheids and the effect of metallicity on the CO band-head at 4.6 μm

We compare mid-infrared (IR) 3.6 and 4.5 micron Warm Spitzer observations for Cepheids in the Milky Way and the Large and Small Magellanic Clouds. Using models, we explore in detail the effect of the CO rotation-vibration band-head at 4.6 micron on the mid-IR photometry. We confirm the temperature sensitivity of the CO band-head at 4.6 micron and find no evidence for an effect at 3.6 micron. We compare the ([3.6]-[4.5]) period-colour relations in the MW, LMC and SMC. The slopes of the period-colour relations for the three galaxies are in good agreement, but there is a trend in zero-point with metallicity, with the lowest metallicity Cepheids having redder mid-IR colours. Finally, we present a colour-[Fe/H] relation based on published spectroscopic metallicities. This empirical relation, calibrated to the metallicity system of Genovali et al., demonstrates that the ([3.6]-[4.5]) colour provides a reliable metallicity indicator for Cepheids, with a precision comparable to current spectroscopic determinations.

[1]  N. Mowlavi,et al.  On the effect of rotation on populations of classical Cepheids. I. Predictions at solar metallicity , 2014, 1403.0809.

[2]  G. Nyman,et al.  THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY , 2015, 1503.01594.

[3]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE DISTANCE AND STRUCTURE OF THE SMC AS REVEALED BY MID-INFRARED OBSERVATIONS OF CEPHEIDS , 2015, 1502.06995.

[4]  L. Kewley,et al.  IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS , 2014, 1410.8146.

[5]  Wendy L. Freedman,et al.  A NEW CEPHEID DISTANCE MEASUREMENT AND METHOD FOR NGC 6822 , 2014, 1409.6830.

[6]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[7]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[8]  Wendy L. Freedman,et al.  THE CARNEGIE HUBBLE PROGRAM: THE INFRARED LEAVITT LAW IN IC 1613 , 2013, 1306.5802.

[9]  Astronomy,et al.  On the metallicity distribution of classical Cepheids in the Galactic inner disk , 2013, 1305.2742.

[10]  M. Groenewegen Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity , 2012, 1212.5478.

[11]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 AND 4.5 μm IN THE MILKY WAY , 2012, 1209.4946.

[12]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[13]  A. Saha,et al.  Ultralong-period Cepheids: a possible primary distance indicator? , 2012, Proceedings of the International Astronomical Union.

[14]  Richard de Grijs,et al.  Advancing the Physics of Cosmic Distances: Conference Summary , 2012, 1209.6529.

[15]  C. Kochanek,et al.  A GLOBAL PHYSICAL MODEL FOR CEPHEIDS , 2011, 1112.3038.

[16]  S. Kanbur,et al.  THEORETICAL CEPHEID PERIOD–LUMINOSITY AND PERIOD–COLOR RELATIONS IN SPITZER IRAC BANDS , 2011, 1111.1791.

[17]  W. Gieren,et al.  CONCERNING THE CLASSICAL CEPHEID VIC WESENHEIT FUNCTION'S STRONG METALLICITY DEPENDENCE , 2011, 1110.1629.

[18]  Wendy L. Freedman,et al.  THE CARNEGIE HUBBLE PROGRAM , 2011, 1109.3802.

[19]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 μm AND 4.5 μm IN THE LARGE MAGELLANIC CLOUD , 2011, 1108.4672.

[20]  K. Z. Stanek,et al.  A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS , 2011 .

[21]  G. Stasińska,et al.  The chemical composition of the Orion star forming region. II. Stars, gas, and dust: the abundance discrepancy conundrum , 2010, 1010.5903.

[22]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[23]  A. Saha,et al.  PULSATION MODELS FOR ULTRA-LOW (Z = 0.0004) METALLICITY CLASSICAL CEPHEIDS , 2010, 1002.4752.

[24]  G. Clementini,et al.  MULTI-EPOCH HUBBLE SPACE TELESCOPE OBSERVATIONS OF IZw18: CHARACTERIZATION OF VARIABLE STARS AT ULTRA-LOW METALLICITIES , 2010, 1001.4044.

[25]  G. Clementini Pulsating variable stars, powerful tools for galactic structure and evolution , 2010 .

[26]  G. Bono,et al.  GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS , 2009, 0911.2470.

[27]  D. Bersier,et al.  The effect of metallicity on Cepheid magnitudes and the distance to M33 , 2009, 0903.4088.

[28]  J. Prieto,et al.  USING ULTRA LONG PERIOD CEPHEIDS TO EXTEND THE COSMIC DISTANCE LADDER TO 100 Mpc AND BEYOND , 2008, 0807.4933.

[29]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[30]  J. Simon,et al.  The M33 Metallicity Project: Resolving the Abundance Gradient Discrepancies in M33 , 2007, 0711.4351.

[31]  D. Bersier,et al.  A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.

[32]  W. Freedman,et al.  Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2006, astro-ph/0612465.

[33]  L. Macri,et al.  A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant , 2006, astro-ph/0608211.

[34]  H. Rix,et al.  James Webb Space Telescope , 2022, Resonance.

[35]  M. Marconi,et al.  Cepheid Pulsation Models at Varying Metallicity and ΔY/ΔZ , 2005, astro-ph/0506207.

[36]  R. Indebetouw,et al.  The Wavelength Dependence of Interstellar Extinction from 1.25 to 8.0 μm Using GLIMPSE Data , 2004, astro-ph/0406403.

[37]  Ralf Siebenmorgen,et al.  High Resolution Infrared Spectroscopy in Astronomy, Proceedings of an ESO Workshop held at Garching, Germany, 18-21 November 2003 , 2005 .

[38]  R. Waters,et al.  Molecular Chemistry in Gaseous Disks Around Young Hot Stars , 2005 .

[39]  P. François,et al.  The influence of chemical composition on the properties of Cepheid stars. I. Period-Luminosity relation vs. iron abundance , 2004, astro-ph/0411594.

[40]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[41]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[42]  C. Esteban,et al.  Cosmochemistry The Melting Pot of the Elements: Frontmatter , 2004 .

[43]  Nikolai Piskunov,et al.  Modelling of Stellar Atmospheres , 2003 .

[44]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[45]  M. Marconi,et al.  Intermediate-Mass Star Models with Different Helium and Metal Contents , 2000, astro-ph/0006251.

[46]  A. Sandage,et al.  On the Sensitivity of the Cepheid Period-Luminosity Relation to Variations of Metallicity , 1999 .

[47]  P. Harding,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale , 1997, astro-ph/9712055.

[48]  J. Wallace,et al.  Radii and Effective Temperatures for G, K, and M Giants and Supergiants , 1996 .

[49]  S. Saar,et al.  Carbon Monoxide Fundamental Bands in Late-Type Stars. III. Chromosphere or CO-mosphere? , 1994 .

[50]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[51]  Stephen C. Russell,et al.  Abundances of the heavy elements in the Magellanic Clouds. III - Interpretation of results , 1992 .

[52]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[53]  A. Sauval,et al.  A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest , 1984 .

[54]  H. Petty,et al.  Methods to determine the temperature dependence of the pre-exponential factor of the Arrhenius equation from thermogravimetric data , 1977 .

[55]  S. Parsons Effective Temperatures, Intrinsic Colours, and Surface Gravities of Yellow Supergiants and Cepheids , 1971 .

[56]  A. Sandage,et al.  A Composite Period-Luminosity Relation for Cepheids at Mean and Maximum Light , 1968 .