Noninvasive optical inhibition with a red-shifted microbial rhodopsin

[1]  G. Griebel Faculty Opinions recommendation of Noninvasive optical inhibition with a red-shifted microbial rhodopsin. , 2014 .

[2]  Staci A. Sorensen,et al.  Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation , 2014, Front. Neural Circuits.

[3]  Kenji F. Tanaka,et al.  Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation , 2014, The Journal of Neuroscience.

[4]  Satoshi P. Tsunoda,et al.  Conversion of Channelrhodopsin into a Light-Gated Chloride Channel , 2014, Science.

[5]  Karl Deisseroth,et al.  Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel , 2014, Science.

[6]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[7]  Doris Y. Tsao,et al.  Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field , 2013, The Journal of Neuroscience.

[8]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[9]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[10]  Karl Deisseroth,et al.  Next-generation transgenic mice for optogenetic analysis of neural circuits , 2013, Front. Neural Circuits.

[11]  Tim C. Lei,et al.  Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain , 2013, PloS one.

[12]  H. Adesnik,et al.  Optogenetic pharmacology for control of native neuronal signaling proteins , 2013, Nature Neuroscience.

[13]  A. Zador,et al.  Corticostriatal neurones in auditory cortex drive decisions during auditory discrimination , 2013, Nature.

[14]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[15]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[16]  Babak Borhan,et al.  Tuning the Electronic Absorption of Protein-Embedded All-trans-Retinal , 2012, Science.

[17]  Edward S. Boyden,et al.  Optogenetic Inactivation Modifies Monkey Visuomotor Behavior , 2012, Neuron.

[18]  Walther Akemann,et al.  Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. , 2012, Journal of neurophysiology.

[19]  Mehrdad Jazayeri,et al.  Saccadic eye movements evoked by optogenetic activation of primate V1 , 2012, Nature Neuroscience.

[20]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[21]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[22]  Bruce R. Rosen,et al.  Optogenetically Induced Behavioral and Functional Network Changes in Primates , 2012, Current Biology.

[23]  J. Spudich,et al.  Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal. , 2012, Biochemistry.

[24]  C. Akerman,et al.  Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission , 2012, Nature Neuroscience.

[25]  Jessica A. Cardin,et al.  Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity , 2012, Journal of Physiology-Paris.

[26]  Suhasa B. Kodandaramaiah,et al.  Automated whole-cell patch clamp electrophysiology of neurons in vivo , 2012, Nature Methods.

[27]  David C Rowland,et al.  Generation of a Synthetic Memory Trace , 2012, Science.

[28]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[29]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[30]  Timothy H. Murphy,et al.  Hemodynamic Responses Evoked by Neuronal Stimulation via Channelrhodopsin-2 Can Be Independent of Intracortical Glutamatergic Synaptic Transmission , 2012, PloS one.

[31]  Karl Deisseroth,et al.  Optetrode: a multichannel readout for optogenetic control in freely moving mice , 2011, Nature Neuroscience.

[32]  Volker Busskamp,et al.  Optogenetic approaches to restoring visual function in retinitis pigmentosa , 2011, Current Opinion in Neurobiology.

[33]  Edward S Boyden,et al.  A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins , 2011, Nature Methods.

[34]  Dan D. Stettler,et al.  Driving Opposing Behaviors with Ensembles of Piriform Neurons , 2011, Cell.

[35]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[36]  Yasushi Miyashita,et al.  Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo , 2011, PloS one.

[37]  Edward S Boyden,et al.  Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice , 2011, The Journal of Neuroscience.

[38]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[39]  M. Fussenegger,et al.  A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice , 2011, Science.

[40]  Hajime Hirase,et al.  A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice , 2011, Neuroscience Research.

[41]  J. de Gier,et al.  Consequences of the overexpression of a eukaryotic membrane protein, the human KDEL receptor, in Escherichia coli. , 2011, Journal of molecular biology.

[42]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[43]  Matthew T. Kaufman,et al.  An optogenetic toolbox designed for primates , 2011, Nature Neuroscience.

[44]  Günther Zeck,et al.  Network Oscillations in Rod-Degenerated Mouse Retinas , 2011, The Journal of Neuroscience.

[45]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[46]  David Kleinfeld,et al.  Chronic optical access through a polished and reinforced thinned skull. , 2010, Nature methods.

[47]  C. Sung,et al.  The cell biology of vision , 2010, The Journal of cell biology.

[48]  T. M. Esdaille,et al.  Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision , 2010, The Journal of Neuroscience.

[49]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[50]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[51]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[52]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[53]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[54]  Karl Deisseroth,et al.  Optogenetic control of epileptiform activity , 2009, Proceedings of the National Academy of Sciences.

[55]  A. James Link,et al.  Stress responses to heterologous membrane protein expression in Escherichia coli , 2009, Biotechnology Letters.

[56]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[57]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[58]  Yoshio Maruyama,et al.  Transcranial optogenetic stimulation for functional mapping of the motor cortex , 2009, Journal of Neuroscience Methods.

[59]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[60]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[61]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[62]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[63]  Hongkui Zeng,et al.  An Inducible and Reversible Mouse Genetic Rescue System , 2008, PLoS genetics.

[64]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[65]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[66]  G. H. Jacobs,et al.  Response to Comment on "Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment" , 2007, Science.

[67]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[68]  W. Gan,et al.  Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex , 2007, Nature Neuroscience.

[69]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[70]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[71]  B. Roth,et al.  Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand , 2007, Proceedings of the National Academy of Sciences.

[72]  K. V. van Wijk,et al.  Consequences of membrane protein overexpression in Escherichia coli , 2007 .

[73]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[74]  J. Grieger,et al.  Production and characterization of adeno-associated viral vectors , 2006, Nature Protocols.

[75]  D T Delpy,et al.  The use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics , 2006, Physics in medicine and biology.

[76]  G. Felsenfeld,et al.  Insulators: exploiting transcriptional and epigenetic mechanisms , 2006, Nature Reviews Genetics.

[77]  Valery V. Tuchin,et al.  Optical properties of human cranial bone in the spectral range from 800 to 2000 nm , 2006, Saratov Fall Meeting.

[78]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[80]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[81]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[82]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[83]  B. Fakler,et al.  Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers , 2005, Journal of Cell Science.

[84]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[85]  Paul Brehm,et al.  Tethering Naturally Occurring Peptide Toxins for Cell-Autonomous Modulation of Ion Channels and Receptors In Vivo , 2004, Neuron.

[86]  Nadya Ugryumova,et al.  Measurement of bone mineral density via light scattering. , 2004, Physics in medicine and biology.

[87]  D. Oesterhelt,et al.  A novel yeast expression system for the overproduction of quality‐controlled membrane proteins , 2003, FEBS letters.

[88]  Hanli Liu,et al.  Validation of a near-infrared probe for detection of thin intracranial white matter structures. , 2003, Journal of neurosurgery.

[89]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[90]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[91]  I. Yaroslavsky,et al.  Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. , 2002, Physics in medicine and biology.

[92]  David Kleinfeld,et al.  Cortical imaging through the intact mouse skull using two‐photon excitation laser scanning microscopy , 2002, Microscopy research and technique.

[93]  N. Kamo,et al.  Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. , 2002, Biochemistry.

[94]  Jesús E González,et al.  Cellular fluorescent indicators and voltage/ion probe reader (VIPR) tools for ion channel and receptor drug discovery. , 2002, Receptors & channels.

[95]  Y. Jan,et al.  Role of ER export signals in controlling surface potassium channel numbers. , 2001, Science.

[96]  D. Scherman,et al.  Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer , 1999, Journal of Gene Medicine.

[97]  A. Roggan,et al.  Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm. , 1999, Journal of biomedical optics.

[98]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[99]  G. Heijne,et al.  Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor , 1997, Molecular microbiology.

[100]  D. Oesterhelt,et al.  Specific arginine and threonine residues control anion binding and transport in the light‐driven chloride pump halorhodopsin , 1997, The EMBO journal.

[101]  G. Felsenfeld,et al.  Characterization of the chicken beta-globin insulator. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[102]  E. Kandel,et al.  Control of Memory Formation Through Regulated Expression of a CaMKII Transgene , 1996, Science.

[103]  R Y Tsien,et al.  Voltage sensing by fluorescence resonance energy transfer in single cells. , 1995, Biophysical journal.

[104]  L Wang,et al.  MCML--Monte Carlo modeling of light transport in multi-layered tissues. , 1995, Computer methods and programs in biomedicine.

[105]  Iwao Kanno,et al.  Regional cerebral blood flow, blood volume, oxygen extraction fraction, and oxygen utilization rate in normal volunteers measured by the autoradiographic technique and the single breath inhalation method , 1995, Annals of nuclear medicine.

[106]  John G. Flannery,et al.  The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration , 1994, Progress in Retinal and Eye Research.

[107]  E. Bamberg,et al.  Light-driven proton or chloride pumping by halorhodopsin. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Gossen,et al.  Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[109]  H. Sasabe,et al.  Bacterial rhodopsins of newly isolated halobacteria , 1992 .

[110]  W. Zijlstra,et al.  Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. , 1991, Clinical chemistry.

[111]  John H. Martin Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat , 1991, Neuroscience Letters.

[112]  D. Delpy,et al.  Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. , 1988, Biochimica et biophysica acta.

[113]  H. Khorana,et al.  Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. , 1987, The Journal of biological chemistry.

[114]  Sadashiva S. Karnik,et al.  Structure-Function Studies on Bacteriorhodopsin , 1987 .

[115]  R. Becker,et al.  Visual pigments. 3. Determination and interpretation of the fluorescence quantum yields of retinals, Schiff bases, and protonated Schiff bases. , 1973, Journal of the American Chemical Society.