Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Cangzhi Jia,et al.  A high-accuracy protein structural class prediction algorithm using predicted secondary structural information. , 2010, Journal of theoretical biology.

[3]  G. Raghava,et al.  Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile , 2010, Amino Acids.

[4]  Jiangning Song,et al.  Improving the accuracy of predicting disulfide connectivity by feature selection , 2010, J. Comput. Chem..

[5]  Xingming Zhao,et al.  Predicting protein–protein interactions from protein sequences using meta predictor , 2010, Amino Acids.

[6]  Xing-Ming Zhao,et al.  APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility , 2010, BMC Bioinformatics.

[7]  Geoffrey I. Webb,et al.  Cascleave: towards more accurate prediction of caspase substrate cleavage sites , 2010, Bioinform..

[8]  Geoffrey I. Webb,et al.  Prodepth: Predict Residue Depth by Support Vector Regression Approach from Protein Sequences Only , 2009, PloS one.

[9]  M. Mather,et al.  Mitochondrial evolution and functions in malaria parasites. , 2009, Annual review of microbiology.

[10]  Jorng-Tzong Horng,et al.  Incorporating structural characteristics for identification of protein methylation sites , 2009, J. Comput. Chem..

[11]  Gajendra P. S. Raghava,et al.  Prediction of guide strand of microRNAs from its sequence and secondary structure , 2009, BMC Bioinformatics.

[12]  Dong Xu,et al.  Computational Identification of Protein Methylation Sites through Bi-Profile Bayes Feature Extraction , 2009, PloS one.

[13]  Dimitrios I. Fotiadis,et al.  Prediction of cis/trans isomerization using feature selection and support vector machines , 2009, J. Biomed. Informatics.

[14]  Gajendra P.S. Raghava,et al.  Prediction of nuclear proteins using SVM and HMM models , 2009, BMC Bioinformatics.

[15]  M. Mather,et al.  Mitochondria in malaria and related parasites: ancient, diverse and streamlined , 2008, Journal of bioenergetics and biomembranes.

[16]  Lukasz A. Kurgan,et al.  Sequence based residue depth prediction using evolutionary information and predicted secondary structure , 2008, BMC Bioinformatics.

[17]  M. Kanehisa,et al.  varDB: a pathogen-specific sequence database of protein families involved in antigenic variation , 2008, Bioinform..

[18]  Lukasz A. Kurgan,et al.  Prediction of protein structural class using novel evolutionary collocation‐based sequence representation , 2008, J. Comput. Chem..

[19]  Jiangning Song,et al.  HSEpred: predict half-sphere exposure from protein sequences , 2008, Bioinform..

[20]  Lukasz A. Kurgan,et al.  SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences , 2008, BMC Bioinformatics.

[21]  Lukasz A. Kurgan,et al.  Secondary structure-based assignment of the protein structural classes , 2008, Amino Acids.

[22]  Jiangning Song,et al.  Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure , 2007, Bioinform..

[23]  Tatsuya Akutsu,et al.  Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition , 2007, BMC Bioinformatics.

[24]  K. Chou,et al.  Recent progress in protein subcellular location prediction. , 2007, Analytical biochemistry.

[25]  Lukasz A. Kurgan,et al.  PFRES: protein fold classification by using evolutionary information and predicted secondary structure , 2007, Bioinform..

[26]  Zheng Yuan,et al.  Quantifying the relationship of protein burying depth and sequence , 2007, Proteins.

[27]  Juwen Shen,et al.  Predicting protein–protein interactions based only on sequences information , 2007, Proceedings of the National Academy of Sciences.

[28]  Hong-Bin Shen,et al.  Ensemble classifier for protein fold pattern recognition , 2006, Bioinform..

[29]  K. Ginalski Comparative modeling for protein structure prediction. , 2006, Current opinion in structural biology.

[30]  Jiangning Song,et al.  Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information , 2006, BMC Bioinformatics.

[31]  Gajendra P S Raghava,et al.  Prediction of Mitochondrial Proteins Using Support Vector Machine and Hidden Markov Model* , 2006, Journal of Biological Chemistry.

[32]  Eoin Fahy,et al.  MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins , 2004, Bioinform..

[33]  Eoin Fahy,et al.  MITOPRED: a web server for the prediction of mitochondrial proteins , 2004, Nucleic Acids Res..

[34]  Gajendra P. S. Raghava,et al.  ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST , 2004, Nucleic Acids Res..

[35]  G. Schneider,et al.  Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[36]  G. Marsaglia,et al.  Evaluating Kolmogorov's distribution , 2003 .

[37]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[38]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[39]  L. H. Miller Table of Percentage Points of Kolmogorov Statistics , 1956 .

[40]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[41]  Keun-Joon Park,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[42]  M. Mather,et al.  A post-genomic view of the mitochondrion in malaria parasites. , 2005, Current topics in microbiology and immunology.

[43]  M. Stephens Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .