Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures.

Elastic properties of materials are an important factor in their integration in applications. Chemical vapor deposited (CVD) monolayer semiconductors are proposed as key components in industrial-scale flexible devices and building blocks of two-dimensional (2D) van der Waals heterostructures. However, their mechanical and elastic properties have not been fully characterized. Here we report high 2D elastic moduli of CVD monolayer MoS2 and WS2 (∼170 N/m), which is very close to the value of exfoliated MoS2 monolayers and almost half the value of the strongest material, graphene. The 2D moduli of their bilayer heterostructures are lower than the sum of 2D modulus of each layer but comparable to the corresponding bilayer homostructure, implying similar interactions between the hetero monolayers as between homo monolayers. These results not only provide deep insight into understanding interlayer interactions in 2D van der Waals structures but also potentially allow engineering of their elastic properties as desired.

[1]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[2]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[3]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[4]  O. Urakawa,et al.  Small - , 2007 .

[5]  Pinshane Y. Huang,et al.  Strain solitons and topological defects in bilayer graphene , 2013, Proceedings of the National Academy of Sciences.

[6]  Sidney R. Cohen,et al.  On the mechanical behavior of WS2 nanotubes under axial tension and compression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[8]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[9]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[10]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[11]  L. Bocquet,et al.  Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. , 2014, Nature materials.

[12]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[13]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[14]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[15]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[16]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[17]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[18]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[19]  S. Ciraci,et al.  The response of mechanical and electronic properties of graphane to the elastic strain , 2009, 0908.2887.

[20]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[21]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[22]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[23]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[24]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[25]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[26]  Christopher Ricks,et al.  To J.S. , 2014 .

[27]  K. Jensen,et al.  Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. , 2006, Physical review letters.

[28]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[29]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[30]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[32]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[33]  J. L. Feldman Elastic constants of 2H-MoS2 and 2H-NbSe2 extracted from measured dispersion curves and linear compressibilities , 1976 .

[34]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[35]  Quanshui Zheng,et al.  Observation of microscale superlubricity in graphite. , 2012, Physical review letters.

[36]  Zhengzheng Shao,et al.  Mechanical and electronic properties of monolayer MoS2 under elastic strain , 2012 .

[37]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[38]  J. G. Simmonds,et al.  The Mechanical Response of Freestanding Circular Elastic Films Under Point and Pressure Loads , 2005 .

[39]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[40]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[41]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[42]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[43]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[44]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[45]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[46]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[47]  K. Wan,et al.  A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress , 2003 .

[48]  Nicholas Petrone,et al.  High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries , 2013, Science.

[49]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[50]  M. S. Singh,et al.  All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. , 1994, Physical review. B, Condensed matter.

[51]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.