The selector-tree network: A new self-routing and non-blocking interconnection network

This paper introduces with the selector-tree network a new self-routing and non-blocking interconnection network: The n × n network is capable of routing any permutation of its n inputs to its n output ports and is therefore non-blocking, and thus, more powerful than Ω-permutation and Banyan networks. In contrast to other non-blocking interconnection networks like the Beneš network, our selector-tree network does not need an additional setup time since the target addresses of the connections directly define the conflict-free routes so that the network is self-routing. The overall depth of the network depends on the implementation of its building block, the selector module: In this paper, we present two preliminary alternatives where the more expensive one requires O(log(n)2) time and O(n2 log(n)) gates while the other one requires O(n) cycles and only O(n) gates for the n × n network. The two alternatives can also be combined to optimize both time and size for particular sizes.

[1]  Joel I. Seiferas,et al.  Sorting Networks of Logarithmic Depth, Further Simplified , 2009, Algorithmica.

[2]  Seung-Woo Seo,et al.  A New Routing Algorithm for a Class of Rearrangeable Networks , 1994, IEEE Trans. Computers.

[3]  Abraham Waksman,et al.  A Permutation Network , 1968, JACM.

[4]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[6]  G. Jack Lipovski,et al.  Banyan networks for partitioning multiprocessor systems , 1973, ISCA '73.

[7]  Richard Cole,et al.  Optimal Parallel Algorithms for Expression Tree Evaluation and List Ranking , 1988, AWOC.

[8]  F. J. Scudder,et al.  Crossbar dial telephone switching system , 1939, Electrical Engineering.

[9]  Nicholas Pippenger,et al.  On Rearrangeable and Non-Blocking Switching Networks , 1978, J. Comput. Syst. Sci..

[10]  Cauligi S. Raghavendra,et al.  Rearrangeability of the Five-Stage Shuffle/Exchange Network for N = 8 , 1987, IEEE Trans. Commun..

[11]  Michael E. Saks,et al.  The periodic balanced sorting network , 1989, JACM.

[12]  Tse-yun Feng,et al.  A Survey of Interconnection Networks , 1981, Computer.

[13]  Si-Qing Zheng,et al.  A Fast Parallel Routing Algorithm for Benes Group Switches , 2002, IASTED PDCS.

[14]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[15]  Tony T. Lee,et al.  Parallel routing algorithms in Benes-Clos networks , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[16]  Charles Clos,et al.  A study of non-blocking switching networks , 1953 .

[17]  Duncan H. Lawrie,et al.  Access and Alignment of Data in an Array Processor , 1975, IEEE Transactions on Computers.

[18]  Sartaj Sahni,et al.  Parallel Algorithms to Set Up the Benes Permutation Network , 1982, IEEE Transactions on Computers.

[19]  Ian Parberry,et al.  The Pairwise Sorting Network , 1992, Parallel Process. Lett..

[20]  Kyungsook Y. Lee On the Rearrangeability of 2(log2N) - 1 Stage Permutation Networks , 1985, IEEE Trans. Computers.

[21]  Mike Paterson,et al.  Improved sorting networks withO(logN) depth , 1990, Algorithmica.

[22]  Seung Ryoul Maeng,et al.  On the Correctness of Inside-Out Routing Algorithm , 1997, IEEE Trans. Computers.

[23]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[24]  Dean M. Tullsen,et al.  Interconnections in multi-core architectures: understanding mechanisms, overheads and scaling , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[25]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[26]  Charles E. Leiserson,et al.  Fat-trees: Universal networks for hardware-efficient supercomputing , 1985, IEEE Transactions on Computers.

[27]  John H. Reif,et al.  Synthesis of Parallel Algorithms , 1993 .

[28]  Henri Casanova,et al.  Parallel Algorithms , 2019, Design and Analysis of Algorithms.

[29]  S. Andresen The Looping Algorithm Extended to Base 2tRearrangeable Switching Networks , 1977, IEEE Trans. Commun..

[30]  Seung-Woo Seo,et al.  Permutation Realizability and Fault Tolerance Property of the Inside-Out Routing Algorithm , 1999, IEEE Trans. Parallel Distributed Syst..

[31]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[32]  Richard Cole,et al.  Faster Optimal Parallel Prefix Sums and List Ranking , 2011, Inf. Comput..

[33]  Rajgopal Kannan The KR-Benes Network: A Control-Optimal Rearrangeable Permutation Network , 2005, IEEE Trans. Computers.

[34]  William J. Dally,et al.  Flattened butterfly: a cost-efficient topology for high-radix networks , 2007, ISCA '07.

[35]  Sartaj Sahni,et al.  A Self-Routing Benes Network and Parallel Permutation Algorithms , 1981, IEEE Transactions on Computers.

[36]  Ravi Shankar,et al.  Survey of Network on Chip (NoC) Architectures & Contributions , 2009 .

[37]  Hasan Çam,et al.  Work-Efficient Routing Algorithms for Rearrangeable Symmetrical Networks , 1999, IEEE Trans. Parallel Distributed Syst..

[38]  V. Benes Optimal rearrangeable multistage connecting networks , 1964 .

[39]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[40]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[41]  John A. Chandy,et al.  2-dilated flattened butterfly: A nonblocking switching network , 2010, 2010 International Conference on High Performance Switching and Routing.

[42]  V. E. Bene Proving the rearrangeability of connecting networks by group calculations , 1975, The Bell System Technical Journal.

[43]  Allan Borodin,et al.  Routing, Merging, and Sorting on Parallel Models of Computation , 1985, J. Comput. Syst. Sci..

[44]  Hasan Çam,et al.  Rearrangeability of (2n-1)-Stage Shuffle-Exchange Networks , 2003, SIAM J. Comput..

[45]  Gary L. Miller,et al.  A Simple Randomized Parallel Algorithm for List-Ranking , 1990, Inf. Process. Lett..