Lump solutions to the ($$\mathbf 2+1 $$2+1)-dimensional Sawada–Kotera equation

In this paper, via generalized bilinear forms, we consider the ($$2+1$$2+1)-dimensional bilinear p-Sawada–Kotera (SK) equation. We derive analytical rational solutions in terms of positive quadratic functions. Through applying the dependent transformation, we present a class of lump solutions of the ($$2+1$$2+1)-dimensional SK equation. Those rationally decaying solutions in all space directions exhibit two kinds of characters, i.e., bright lump wave (one peak and two valleys) and bright–dark lump wave (one peak and one valley). In addition, we also obtain three families of bright–dark lump wave solutions to the nonlinear p-SK equation for $$p=3$$p=3.

[1]  Wen-Xiu Ma,et al.  Lump solutions to nonlinear partial differential equations via Hirota bilinear forms , 2016, 1607.06983.

[2]  David J. Kaup,et al.  The lump solutions and the Bäcklund transformation for the three‐dimensional three‐wave resonant interaction , 1981 .

[3]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[4]  Igor Krichever,et al.  Rational solutions of the Kadomtsev — Petviashvili equation and integrable systems of N particles on a line , 1978 .

[5]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[6]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[7]  Kenji Imai,et al.  DROMION AND LUMP SOLUTIONS OF THE ISHIMORI-I EQUATION , 1997 .

[8]  Bo Tian,et al.  Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function , 2010 .

[9]  Boris Konopelchenko,et al.  Some new integrable nonlinear evolution equations in 2 + 1 dimensions , 1984 .

[10]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[11]  Xing Lü,et al.  New bilinear Bäcklund transformation with multisoliton solutions for the (2+1)-dimensional Sawada–Kotera model , 2014 .

[12]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[13]  Wen-Xiu Ma,et al.  Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations , 2016 .

[14]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions for (2 + 1)‐dimensional Sawada–Kotera and Caudrey–Dodd–Gibbon equations , 2011 .

[15]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[16]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[17]  Jingyuan Yang,et al.  Lump solutions to the BKP equation by symbolic computation , 2016 .

[18]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[19]  V. Dubrovsky,et al.  The construction of exact solutions of two-dimensional integrable generalizations of Kaup–Kuperschmidt and Sawada–Kotera equations via ∂̄-dressing method , 2002 .

[20]  Javier Villarroel,et al.  On the Discrete Spectrum of the Nonstationary Schrödinger Equation and Multipole Lumps of the Kadomtsev–Petviashvili I Equation , 1999 .

[21]  Zhenyun Qin,et al.  Lump solutions to dimensionally reduced $$\varvec{p}$$p-gKP and $$\varvec{p}$$p-gBKP equations , 2016 .

[22]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[23]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.