Numerical Upscaling for Multiscale Flow Problems

The thesis at hand deals with the numerical solution of multiscale problems arising in the modeling of processes in fluid and thermo dynamics. Many of these processes, governed by partial differential equations, are relevant in engineering, geoscience, and environmental studies. More precisely, this thesis discusses the efficient numerical computation of effective macroscopic thermal conductivity tensors of high-contrast composite materials. The term "high-contrast" refers to large variations in the conductivities of the constituents of the composite. Additionally, this thesis deals with the numerical solution of Brinkman's equations. This system of equations adequately models viscous flows in (highly) permeable media. It was introduced by Brinkman in 1947 to reduce the deviations between the measurements for flows in such media and the predictions according to Darcy's model.

[1]  Doina Cioranescu,et al.  Mathematical Analysis of Lattice-type Structures with Complicated Geometry , 2001 .

[2]  Brahim Amaziane,et al.  HOMOGENIZATION OF A SINGLE PHASE FLOW THROUGH A POROUS MEDIUM IN A THIN LAYER , 2007 .

[3]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[4]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[5]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[6]  Peter Wall,et al.  Two-scale convergence , 2002 .

[7]  Grigory Panasenko,et al.  Multi-scale Modelling for Structures and Composites , 2005 .

[8]  S. Torquato Random Heterogeneous Materials , 2002 .

[9]  Aslak Tveito,et al.  On the Approximation of the Solution of the Pressure Equation by Changing the Domain , 1997, SIAM J. Appl. Math..

[10]  Yalchin Efendiev,et al.  Multiscale methods for parabolic equations with continuum spatial scales , 2007 .

[11]  Pierre M. Adler,et al.  Effective permeability of fractured porous media in steady state flow , 2003 .

[12]  Andrey L. Piatnitski,et al.  On the double porosity model of a single phase flow in random media , 2003 .

[13]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[14]  T. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Lecture Notes in Computational Science and Engineering) , 2008 .

[15]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[16]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[17]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[18]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  A. Tveito,et al.  An analysis of a preconditioner for the discretized pressure equation arising in reservoir simulation , 1999 .

[21]  I. Graham,et al.  Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems , 2008 .

[22]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[23]  Stephen Whitaker,et al.  Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development , 1995 .

[24]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[25]  Louis J. Durlofsky,et al.  Numerical Calculation of Equivalent Cell Permeability Tensors for General Quadrilateral Control Volumes , 2002 .

[26]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[27]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[28]  Philippe Angot,et al.  Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows , 1999 .

[29]  Raytcho D. Lazarov,et al.  Noname manuscript No. (will be inserted by the editor) Fast Numerical Upscaling of Heat Equation for Fibrous Materials , 2009 .

[30]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[31]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[32]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[33]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[34]  Yalchin Efendiev,et al.  A Multiscale Method for Modeling Transport in Porous Media on Unstructured Corner-Point Grids , 2008 .

[35]  Todd Arbogast Analysis of the simulation of single phase flow through a naturally fractured reservoir , 1989 .

[36]  Andrey L. Piatnitski,et al.  On homogenization of networks and junctions , 2002 .

[37]  Grégoire Allaire,et al.  Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes , 1991 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  Richard E. Ewing,et al.  Multi-physics and Multi-scale Methods for Modeling Fluid Flow Through Naturally-Fractured Vuggy Carbonate Reservoirs , 2007 .

[40]  V. Maz'ya,et al.  Elliptic Boundary Value Problems , 1984 .

[41]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[42]  Achi Brandt,et al.  A Domain Decomposition Approach for Calculating the Graph Corresponding to a Fibrous Geometry , 2009 .

[43]  Richard E. Ewing,et al.  A Simplified Method for Upscaling Composite Materials with High Contrast of the Conductivity , 2009, SIAM J. Sci. Comput..

[44]  Junping Wang,et al.  New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..

[45]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[46]  K. Stüben A review of algebraic multigrid , 2001 .

[47]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[48]  Grégoire Allaire,et al.  Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes , 1991 .

[49]  Andreas Wiegmann,et al.  EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials , 2006 .

[50]  Bjørn Fredrik Nielsen,et al.  Finite Element Discretizations of Elliptic Problems in the Presence of Arbitrarily Small Ellipticity: An Error Analysis , 1999 .

[51]  Oleg Iliev,et al.  On upscaling heat conductivity for a class of industrial problems , 2007 .