Exploiting TERRA-AQUA MODIS Relationship in the Reflective Solar Bands for Aerosol Retrieval

Satellite remote sensing has been providing aerosol data with ever-increasing accuracy, representative of the MODerate-resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and Deep Blue (DB) aerosol retrievals. These retrievals are generally performed over spectrally dark objects and therefore may struggle over bright surfaces. This study proposed an analytical TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. For the relationship development, the bidirectional reflectance distribution function (BRDF) effects were adjusted using reflectance ratios in the MODIS 2.13 μm band and the path radiance was approximated as an analytical function of aerosol optical thickness (AOT) and scattering phase function. Comparisons with MODIS observation data, MODIS AOT data, and sun photometer measurements demonstrate the validity of the proposed relationship for aerosol retrieval. The synergetic TERRA-AQUA MODIS retrievals are highly correlated with the ground measured AOT at TERRA MODIS overpass time (R2 = 0.617; RMSE = 0.043) and AQUA overpass time (R2 = 0.737; RMSE = 0.036). Compared to our retrievals, both the MODIS DT and DB retrievals are subject to severe underestimation. Sensitivity analyses reveal that the proposed method may perform better over non-vegetated than vegetated surfaces, which can offer a complement to MODIS operational algorithms. In an analytical form, the proposed method also has advantages in computational efficiency, and therefore can be employed for fine-scale (relative to operational 10 km MODIS product) MODIS aerosol retrieval. Overall, this study provides insight into aerosol retrievals and other applications regarding TERRA-AQUA MODIS data.

[1]  Lorraine Remer,et al.  Angular and seasonal variation of spectral surface reflectance ratios: implications for the remote sensing of aerosol over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Liangfu Chen,et al.  Comparison and evaluation of the MODIS Collection 6 aerosol data in China , 2015 .

[3]  Yong Xue,et al.  Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS , 2005 .

[4]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[5]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[6]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[7]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[10]  G. Dedieu,et al.  SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum , 1994 .

[11]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[12]  Zhengqiang Li,et al.  Retrieval of Aerosol Fine-Mode Fraction from Intensity and Polarization Measurements by PARASOL over East Asia , 2016, Remote. Sens..

[13]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[14]  J. Nichol,et al.  An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region , 2011 .

[15]  Peter R. J. North,et al.  Improvements in Aerosol Optical Depth Estimation Using Multiangle CHRIS/PROBA Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  David J. Diner,et al.  Retrieval of aerosol optical properties from multi-angle satellite imagery , 1992, IEEE Trans. Geosci. Remote. Sens..

[17]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[18]  J. Veefkind,et al.  Regional Distribution of Aerosol over Land, Derived from ATSR-2 and GOME , 2000 .

[19]  Fred Moshary,et al.  Improved MODIS Aerosol Retrieval Using Modified VIS/SWIR Surface Albedo Ratio Over Urban Scenes , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[21]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[22]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[23]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[24]  Nicholas R. Nalli,et al.  The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) Climate Dataset: Initial Analyses and Evaluations , 2002 .

[25]  Yong Xue,et al.  Prior knowledge-supported aerosol optical depth retrieval over land surfaces at 500 m spatial resolution with MODIS data , 2012 .

[26]  Gabriele Curci,et al.  Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux , 2015, Remote. Sens..

[27]  R. J. Flowerdew,et al.  An approximation to improve accuracy in the derivation of surface reflectances from multi‐look satellite radiometers , 1995 .

[28]  Muhammad Bilal,et al.  A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces , 2013 .

[29]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[30]  Muhammad Bilal,et al.  Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms , 2014 .

[31]  C. O. Justice,et al.  Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR) , 2000 .

[32]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[33]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[34]  Y. Kaufman Aerosol optical thickness and atmospheric path radiance , 1993 .

[35]  Rosa Maria Cavalli,et al.  Influence of aerosol and surface reflectance variability on hyperspectral observed radiance , 2011 .

[36]  Jaakko Kukkonen,et al.  Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data , 2009 .

[37]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[38]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[39]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[40]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[41]  D. Allen Chu,et al.  Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[43]  Xingwang Fan,et al.  A global study of NDVI difference among moderate-resolution satellite sensors , 2016 .

[44]  Muhammad Bilal,et al.  Evaluation of MODIS aerosol retrieval algorithms over the Beijing‐Tianjin‐Hebei region during low to very high pollution events , 2015 .

[45]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[46]  Yong Xue,et al.  Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data , 2013 .

[47]  Claudia Giardino,et al.  The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters , 2015 .

[48]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[49]  B. Draine Scattering by Interstellar Dust Grains. II. X-Rays , 2003, astro-ph/0308251.

[50]  Yuanbo Liu,et al.  Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression , 2015, Remote. Sens..

[51]  Yuanbo Liu,et al.  Quantifying the Relationship Between Intersensor Images in Solar Reflective Bands: Implications for Intercalibration , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Lucas Alados-Arboledas,et al.  Determination of aerosol optical thickness from measurements of spectral sky radiance , 1998 .

[53]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[54]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[55]  Subodh K. Sharma A review of approximate analytic light-scattering phase functions , 2015 .

[56]  D. Antoine,et al.  Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum. , 1998, Applied optics.