A stochastic model and a functional central limit theorem for information processing in large systems of neurons

The paper deals with information transmission in large systems of neurons. We model the membrane potential in a single neuron belonging to a cell tissue by a non time-homogeneous Cox-Ingersoll-Ross type diffusion; in terms of its time-varying expectation, this stochastic process can convey deterministic signals.We model the spike train emitted by this neuron as a Poisson point process compensated by the occupation time of the membrane potential process beyond the excitation threshold.In a large system of neurons 1≤i≤N processing independently the same deterministic signal, we prove a functional central limit theorem for the pooled spike train collected from the N neurons. This pooled spike train allows to recover the deterministic signal, up to some shape transformation which is explicit.

[1]  S. G. Mikhlin,et al.  Non-Linear Integral Equations , 1975 .

[2]  L. Grinblat,et al.  A limit theorem for measurable random processes and its applications , 1976 .

[3]  Laura Sacerdote,et al.  On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity , 1995, Biological Cybernetics.

[4]  Susanne Ditlevsen,et al.  Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Laura Sacerdote,et al.  The Ornstein–Uhlenbeck neuronal model with signal-dependent noise , 2001 .

[6]  Y. Kutoyants,et al.  Statistical Inference for Spatial Poisson Processes , 1998 .

[7]  P. Lánský,et al.  Diffusion approximation of the neuronal model with synaptic reversal potentials , 1987, Biological Cybernetics.

[8]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[9]  P. Brémaud Point Processes and Queues , 1981 .

[10]  P Lánský,et al.  The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. , 1999, Journal of the peripheral nervous system : JPNS.

[11]  Yutaka Sakai,et al.  The Ornstein-Uhlenbeck Process Does Not Reproduce Spiking Statistics of Neurons in Prefrontal Cortex , 1999, Neural Computation.

[12]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[13]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[14]  P. Lánský,et al.  Diffusion approximation and first-passage-time problem for a model neuron III. Abirth-and-death process approach , 1988 .

[15]  R. Capocelli,et al.  Diffusion approximation and first passage time problem for a model neuron , 1971, Biological cybernetics.

[16]  J. Movshon Reliability of Neuronal Responses , 2000, Neuron.

[17]  Y. Kutoyants Statistical Inference for Ergodic Diffusion Processes , 2004 .

[18]  H. Cremers,et al.  On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in LEP , 1986 .

[19]  L. Overbeck Estimation for Continuous Branching Processes , 1998 .

[20]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[21]  Tobias Rydén,et al.  Estimation in the Cox-Ingersoll-Ross Model , 1997, Econometric Theory.

[22]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[23]  Michel Loève,et al.  Probability Theory I , 1977 .

[24]  Henry C. Tuckwell,et al.  Stochastic processes in the neurosciences , 1989 .

[25]  Y. Kutoyants,et al.  Efficient Density Estimation for Ergodic Diffusion Processes , 1998 .

[26]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[27]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .