Reduced-Order Models for MEMS Applications

We review the development of reduced-order models for MEMS devices. Based on their implementation procedures, we classify these reduced-order models into two broad categories: node and domain methods. Node methods use lower-order approximations of the system matrices found by evaluating the system equations at each node in the discretization mesh. Domain-based methods rely on modal analysis and the Galerkin method to rewrite the system equations in terms of domain-wide modes (eigenfunctions). We summarize the major contributions in the field and discuss the advantages and disadvantages of each implementation. We then present reduced-order models for microbeams and rectangular and circular microplates. Finally, we present reduced-order approaches to model squeeze-film and thermoelastic damping in MEMS and present analytical expressions for the damping coefficients. We validate these models by comparing their results with available theoretical and experimental results.

[1]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[2]  Siak Piang Lim,et al.  A neural-network-based method of model reduction for the dynamic simulation of MEMS , 2001 .

[3]  Yao-Joe Yang,et al.  Low-order models for fast dynamical simulation of MEMS microstructures , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[4]  J. J. Blech On Isothermal Squeeze Films , 1983 .

[5]  Siak Piang Lim,et al.  Proper orthogonal decomposition and component mode synthesis in macromodel generation for the dynamic simulation of a complex MEMS device , 2003 .

[6]  Wolfram Dötzel,et al.  Computational Methods for Reduced Order Modeling of Coupled Domain Simulations , 2001 .

[7]  R. Christian The theory of oscillating-vane vacuum gauges , 1966 .

[8]  James Demmel,et al.  Sugar: Advancements in a 3D Multi-domain Simulation Package for MEMS , 2001 .

[9]  T. Roszhart The effect of thermoelastic internal friction on the Q of micromachined silicon resonators , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[10]  A. L. Kimball,et al.  Internal Friction in Solids , 1926, Transactions of the American Society of Mechanical Engineers.

[11]  James Demmel,et al.  New Numerical Techniques and Tools in SUGAR for 3D MEMS Simulation , 2001 .

[12]  Ali H. Nayfeh,et al.  Modeling and simulations of thermoelastic damping in microplates , 2004 .

[13]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[14]  William Prager,et al.  Theory of Thermal Stresses , 1960 .

[15]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[16]  Peter M. Osterberg,et al.  Electrostatically actuated microelectromechanical test structures for material property measurement , 1995 .

[17]  S. K. De,et al.  Physical And Reduced-Order Dynamic Analysis of MEMS , 2003, ICCAD 2003.

[18]  G. K. Ananthasuresh,et al.  Nonlinear electromechanical behaviour of an electrostatic microrelay , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[19]  S.D. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[20]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[21]  J. B. Starr Squeeze-film damping in solid-state accelerometers , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[22]  Wilko J. Kindt,et al.  Quality factor of torsional resonators in the low-pressure region , 1996 .

[23]  D. W. Burns,et al.  Characteristics of polysilicon resonant microbeams , 1992 .

[24]  Robert B. Darling,et al.  Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green's function approach , 1998 .

[25]  Jinghong Chen,et al.  Dynamic macromodeling of MEMS mirror devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[26]  Ali H. Nayfeh,et al.  Mechanical Behavior of an Electrostatically Actuated Microplate , 2003 .

[27]  Ali H. Nayfeh,et al.  Static and Dynamic Behavior of an Electrically Excited Resonant Microbeam , 2002 .

[28]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[29]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated clamped circular plates , 2005 .

[30]  Tor A. Fjeldly,et al.  Nonlinear Analytical Reduced-Order Models for MEMS , 2002 .

[31]  Yuancheng Sun,et al.  Energy transfer model for squeeze-film air damping in low vacuum , 2002 .

[32]  Vimal Singh,et al.  Perturbation methods , 1991 .

[33]  Sung-Mo Kang,et al.  Model-order reduction of weakly nonlinear MEMS devices with Taylor series expansion and Arnoldi process , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[34]  D. Ostergaard,et al.  Finite Element Based Reduced Order Modeling of Micro Electro Mechanical Systems (MEMS) , 2000 .

[35]  Changchun Zhu,et al.  The theoretical analysis on damping characteristics of resonant microbeam in vacuum , 1999 .

[36]  B. Schauwecker,et al.  Reduced order modeling of fluid structural interactions in MEMS based on model projection techniques , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[37]  Bumkyoo Choi,et al.  Improved analysis of microbeams under mechanical and electrostatic loads , 1997 .

[38]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[39]  P. Zavracky,et al.  Micromechanical switches fabricated using nickel surface micromachining , 1997 .

[40]  Sung-Mo Kang,et al.  Model-order reduction of nonlinear MEMS devices through arclength-based Karhunen-Loeve decomposition , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[41]  Jinghong Chen,et al.  Techniques for Coupled Circuit and Micromechanical Simulation , 2000 .

[42]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[43]  Jason V. Clark,et al.  Addressing the needs of complex MEMS design , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[44]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[45]  Jacob K. White,et al.  A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[46]  Sung-Mo Kang,et al.  An algorithm for automatic model-order reduction of nonlinear MEMS devices , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[47]  Yong P. Chen,et al.  A Quadratic Method for Nonlinear Model Order Reduction , 2000 .

[48]  Siak Piang Lim,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS – PART II: MODEL REDUCTION FOR MEMS DYNAMICAL ANALYSIS , 2002 .

[49]  H. P. Lee,et al.  Nonlinear Dynamic Analysis of MEMS Switches by Nonlinear Modal Analysis , 2003 .

[50]  M. Younis,et al.  A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping , 2004 .

[51]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[52]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[53]  Jan G. Korvink,et al.  Automatic order reduction of thermo-electric models for MEMS: Arnoldi versus Guyan , 2002, The Fourth International Conference on Advanced Semiconductor Devices and Microsystem.

[54]  D Ramaswamy,et al.  Automatic Generation of Small-Signal Dynamic Macromodels from 3-D Simulation , 2001 .

[55]  Narayan R. Aluru,et al.  Mixed-domain and reduced-order modeling of electroosmotic transport in Bio-MEMS , 2000, Proceedings 2000 IEEE/ACM International Workshop on Behavioral Modeling and Simulation.

[56]  Richard B. Fair,et al.  Scalable Macromodels for Microelectromechanical Systems , 2001 .

[57]  Ali H. Nayfeh,et al.  A Nonlinear Reduced-Order Model for Electrostatic MEMS , 2003 .

[58]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[59]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated microbeam-based MEMS , 2003 .

[60]  Olivier Français,et al.  NORMALIZED ABACUS FOR THE GLOBAL BEHAVIOR OF DIAPHRAGMS : PNEUMATIC, ELECTROSTATIC, PIEZOELECTRIC OR ELECTROMAGNETIC ACTUATION , 1999 .

[61]  T. Veijola,et al.  Equivalent-circuit model of the squeezed gas film in a silicon accelerometer , 1995 .

[62]  S. D. Senturia,et al.  Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs , 1999 .

[63]  Jan G. Korvink,et al.  Automatic order reduction of thermo-electric model for micro-ignition unit , 2002, International Conferencre on Simulation of Semiconductor Processes and Devices.