The Power to See: A New Graphical Test of Normality

Many statistical procedures assume that the underlying data-generating process involves Gaussian errors. Among the popular tests for normality, only the Kolmogorov–Smirnov test has a graphical representation. Alternative tests, such as the Shapiro–Wilk test, offer little insight as to how the observed data deviate from normality. In this article, we discuss a simple new graphical procedure which provides simultaneous confidence bands for a normal quantile–quantile plot. These bands define a test of normality and are narrower in the tails than those related to the Kolmogorov–Smirnov test. Correspondingly, the new procedure has greater power to detect deviations from normality in the tails. Supplementary materials for this article are available online.

[1]  Jordan Stoyanov Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics A. DasGupta, 2011 New York, Springer xx + 782 pp., £81.00 ISBN 978-1-441-99633-6 , 2014 .

[2]  W. Rogers,et al.  Understanding some long-tailed symmetrical distributions , 1972 .

[3]  Walter A. Rosenkrantz,et al.  Confidence Bands for Quantile Functions: A Parametric and Graphic Alternative for Testing Goodness of Fit , 2000 .

[4]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[5]  Hung T. Nguyen,et al.  Probability for statistics , 1989 .

[6]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[7]  D. Darling The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .

[8]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[9]  John W. Tukey,et al.  Configural Polysampling: A Route to Practical Robustness. , 1993 .

[10]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[11]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[12]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[13]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[14]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[15]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[16]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[17]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[18]  A. Buja,et al.  Calibration for Simultaneity : ( Re ) Sampling Methods for Simultaneous Inference with Applications to Function Estimation and Functional Data , 2022 .

[19]  Anirban DasGupta,et al.  Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics , 2011 .

[20]  Elizabeth Bradley Analysis of time series , 2003 .

[21]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[22]  E. H. Lloyd LEAST-SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS , 1952 .

[23]  W. Feller On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions , 1948 .

[24]  R. Beran Prepivoting to reduce level error of confidence sets , 1987 .

[25]  Julian J. Faraway,et al.  The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .

[26]  John H. J. Einmahl,et al.  Bounds for weighted multivariate empirical distribution functions , 1985 .

[27]  A. C. Atkinson,et al.  Two graphical displays for outlying and influential observations in regression , 1981 .

[28]  A. Kolmogoroff Confidence Limits for an Unknown Distribution Function , 1941 .

[29]  N. O'Reilly On the Weak Convergence of Empirical Processes in Sup-norm Metrics , 1974 .

[30]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[31]  Z. Birnbaum Numerical Tabulation of the Distribution of Kolmogorov's Statistic for Finite Sample Size , 1952 .

[32]  R. Tsay Analysis of Financial Time Series: Tsay/Financial Time Series 3E , 2010 .