The structure of the first coordination shell of the yttrium ion in concentrated aqueous solutions of YBr3 and YCl3

Yttrium hydrates with eight-coordinated water molecules seem to be the predominant species in concentrated aqueous solutions of yttrium bromide and chloride. For molarities from approximately 2.1 down to 0.6M in H2O EXAFS experiments yield an average Y3+-O distance of 2.33+or-0.02 AA for the YBr3 and 2.34+or-0.02 AA for the YCl3. Investigations by means of Raman spectroscopy with substitution of the solvent by D2O for a 2.1M solution of YCl3 lead to an isotopic shift of 1.052+or-0.007 for the polarized band assigned to the stretching vibrational mode of the complex, which corroborates the idea of the presence of a (relatively) stable hydrate of the yttrium ion.

[1]  M.A.S. Oliveira,et al.  Raman spectroscopic investigations of concentrated aqueous solutions of InCl3 and of InBr3 , 2010 .

[2]  Y. Waseda,et al.  Anomalous X-ray scattering study of aqueous solutions of YCl3 and ErCl3 , 1990 .

[3]  M. A. Howe The hydration of ions in aqueous solution: reverse Monte Carlo analysis of neutron diffraction data , 1990 .

[4]  P. Lagarde,et al.  EXAFS studies of local order in InBr3 aqueous solutions , 1990 .

[5]  M. I. Cabaço,et al.  X-ray diffraction investigations of the structure of concentrated ionic solutions , 1986 .

[6]  M. I. Cabaço,et al.  Molecular models of the structure of concentrated electrolytic solutions , 1986 .

[7]  H. Wakita,et al.  X-ray investigation of the coordination and complex formation of lanthanoid ions in aqueous perchlorate and selenate solutions , 1985 .

[8]  P. Lagarde,et al.  EXAFS evidence for local order in aqueous solutions of CdBr2 , 1985 .

[9]  K. Hermansson,et al.  Cation influence on the structure and electron density of water in some Men+·H2O complexes , 1984 .

[10]  G. Piccaluga,et al.  EXAFS study of Ni–Cl bonding in Ni(II) aqueous solutions at increasing Cl−/Ni2+ ratios , 1983 .

[11]  J. Enderby,et al.  Ni2+ hydration in perchlorate and chloride solutions , 1981 .

[12]  A. Fontaine,et al.  EXAFS studies of strong electrolytic solutions , 1980 .

[13]  D. R. Sandstrom Ni2+ coordination in aqueous NiCl2 solutions: Study of the extended x‐ray absorption fine structure , 1979 .

[14]  M. Fontana,et al.  Extended X-Ray-Absorbtion Fine-Structure Studies of Local Ordering in Highly Concentrated Aqueous Solutions of Cu Br 2 , 1978 .

[15]  B. Kincaid,et al.  Synchrotron radiations studies of x-ray absorption spectra of ions in aqueous solutions , 1975 .

[16]  Ting-Kuo Lee,et al.  Theory of Extended X-Ray Absorption Fine Structure , 1975 .

[17]  S. Doniach,et al.  Theory of extended x-ray absorption edge fine structure (EXAFS) in crystalline solids , 1975 .

[18]  A. D. McLachlan,et al.  The pairing of electronic states in alternant hydrocarbons , 1959 .

[19]  M. Marques,et al.  Raman spectra of concentrated solutions of magnesium and aluminium chloride in water and deuterium oxide , 1990 .

[20]  A. D. Silveira,et al.  Nouvelles recherches sur l'éxistence de cations complexes de structure définie dans les solutions d'électrolytes , 1965 .