Improving BER Performance of LDPC Codes based on Intermediate Decoding Results

The paper presents a novel approach to reduce the bit error rate (BER) in iterative belief propagation (BP) decoding of low density parity check (LDPC) codes. The behavior of the BP algorithm is first investigated as a function of number of decoder iterations, and it is shown that typical uncorrected error patterns can be classified into 3 categories: oscillating, nearly-constant, or random-like, with a predominance of oscillating patterns at high Signal-to-Noise (SNR) values. A proposed decoder modification is then introduced based on tracking the number of failed parity check equations in the intermediate decoding iterations, rather than relying on the final decoder output (after reaching the maximum number of iterations). Simulation results with a rate ¿ (1024,512) progressive edge-growth (PEG) LDPC code show that the proposed modification can decrease the BER by as much as 10-to-40%, particularly for high SNR values.

[1]  Soo In Lee,et al.  Bit probability transition characteristics of LDPC code , 2003, 10th International Conference on Telecommunications, 2003. ICT 2003..

[2]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[3]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  Toshinobu Kaneko,et al.  Modified Belief Propagation Decoding Algorithm for Low-Density Parity Check Code Based on Oscillation , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).