Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering

Visual clutter denotes a disordered collection of graphical entities in information visualization. Clutter can obscure the structure present in the data. Even in a small dataset, clutter can make it hard for the viewer to find patterns, relationships and structure. In this paper, we define visual clutter as any aspect of the visualization that interferes with the viewer's understanding of the data, and present the concept of clutter-based dimension reordering. Dimension order is an attribute that can significantly affect a visualization's expressiveness. By varying the dimension order in a display, it is possible to reduce clutter without reducing information content or modifying the data in any way. Clutter reduction is a display-dependent task. In this paper, we follow a three-step procedure for four different visualization techniques. For each display technique, first, we determine what constitutes clutter in terms of display properties; then we design a metric to measure visual clutter in this display; finally we search for an order that minimizes the clutter in a display

[1]  Sharon L. Weinberg An Introduction to Multidimensional Scaling. , 1991 .

[2]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[3]  M. Sheelagh T. Carpendale,et al.  Distortion viewing techniques for 3-dimensional data , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[4]  John W. Tukey,et al.  PRIM-9: An Interactive Multi-dimensional Data Display and Analysis System , 1975, ACM Pacific.

[5]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[6]  H. P. Friedman,et al.  The surgical implications of physiologic patterns in myocardial infarction shock. , 1972, Surgery.

[7]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[8]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[9]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[10]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[11]  King-Sun Fu,et al.  A Sentence-to-Sentence Clustering Procedure for Pattern Analysis , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[13]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[14]  Daniel A. Keim,et al.  Pixel-Oriented Visualization Techniques for Exploring Very Large Data Bases , 1996 .

[15]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[16]  Graham J. Wills,et al.  An interactive view for hierarchical clustering , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[17]  Mark D. Apperley,et al.  A review and taxonomy of distortion-oriented presentation techniques , 1994, TCHI.

[18]  I. Jolliffe Principal Component Analysis , 2002 .

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[21]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[22]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[23]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[24]  Michael Friendly,et al.  Effect ordering for data displays , 2003, Comput. Stat. Data Anal..

[25]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[26]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[27]  Michael Stonebraker,et al.  Constant information density in zoomable interfaces , 1998, AVI '98.

[28]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .