Synthesis of graphene-modified Li3V2(PO4)3 with superior electrochemical properties via a catalytic solid-state-reaction process

[1]  Yunhui Huang,et al.  Superior rate performance of Li3V2(PO4)3 co-modified by Fe-doping and rGO-incorporation , 2016 .

[2]  Yongkui Li,et al.  Monoclinic Li3V2(PO4)3/C nanocrystals co-modified with graphene nanosheets and carbon nanotubes as a three-dimensional-network cathode material for rechargeable lithium-ion batteries , 2016 .

[3]  Hailong Qiu,et al.  In-situ preparation of Li3V2(PO4)3/C and carbon nanofibers hierarchical cathode by the chemical vapor deposition reaction , 2016 .

[4]  Yan Yu,et al.  Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries , 2014 .

[5]  Chun–Chen Yang,et al.  Li3V2(PO4)3/C composite materials synthesized using the hydrothermal method with double-carbon sources , 2014 .

[6]  J. Gim,et al.  Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries , 2014, Scientific Reports.

[7]  Yunlong Zhao,et al.  One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. , 2014, Nano letters.

[8]  Huajun Guo,et al.  Structural and electrochemical performance of Na-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries via rheological phase reaction , 2013 .

[9]  A. Manthiram,et al.  Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries , 2013 .

[10]  Junfang Zhu,et al.  Synthesis of Li3V2(PO4)3/reduced graphene oxide cathode material with high-rate capability , 2013, Ionics.

[11]  Yunhui Huang,et al.  Controllable synthesis of spherical Li3V2(PO4)3/C cathode material and its electrochemical performance , 2013 .

[12]  Y. Kadoma,et al.  Influence of the Carbon Source on the Surface and Electrochemical Characteristics of Lithium Excess Li4.3Ti5O12 Carbon Composite , 2012 .

[13]  H. Hng,et al.  Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets : binder-free and high rate cathode material for lithium-ion batteries , 2012 .

[14]  J. Pinto,et al.  Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries , 2012 .

[15]  J. Tu,et al.  Synthesis and improved electrochemical performances of porous Li3V2(PO4)3/C spheres as cathode material for lithium-ion batteries , 2011 .

[16]  Gang Yang,et al.  Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. , 2011, Chemical communications.

[17]  J. Tu,et al.  Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials , 2011 .

[18]  J. Tu,et al.  Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source , 2011 .

[19]  J. Tu,et al.  Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis , 2010 .

[20]  Jiawei Wang,et al.  Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source , 2009 .

[21]  Yanming Zhao,et al.  Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine , 2006 .

[22]  M. Nakayama,et al.  Changes in electronic structure upon Li insertion reaction of monoclinic Li3Fe2(PO4)3. , 2006, The journal of physical chemistry. B.

[23]  Jingsi Yang,et al.  Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO4 (M = Fe , Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route , 2006 .

[24]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[25]  A. Yamada,et al.  Olivine-type cathodes: Achievements and problems , 2003 .

[26]  M. Morcrette,et al.  A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 , 2003 .

[27]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[28]  J. Yamaki,et al.  Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries , 2001 .

[29]  K. Uematsu,et al.  Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature , 2000 .

[30]  John B. Goodenough,et al.  New cathode materials for rechargeable lithium batteries : The 3-D framework structures Li3Fe2(XO4)3 (X= P, As) , 1998 .

[31]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[32]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .