The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulfur emissions, and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulfate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt Pinatubo eruption.

[1]  S. Mossop Stratospheric Particles At 20 Km , 1963, Nature.

[2]  F. Volz Twilight Phenomena Caused by the Eruption of Agung Volcano , 1964, Science.

[3]  J. Stock,et al.  THE ATMOSPHERIC EXTINCTION ON CERRO TOLOLO DURING 1963 , 1964 .

[4]  J. Rosen The vertical distribution of dust to 30 kilometers , 1964 .

[5]  S. Mossop Volcanic Dust Collected at an Altitude of 20 KM , 1964, Nature.

[6]  F. Volz Note on the global variation of stratospheric turbidity since the eruption of Agung Volcano , 1965 .

[7]  B. Hicks,et al.  Stratospheric Transport of Volcanic Dust Inferred from Solar Radiation Measurements , 1965, Nature.

[8]  E. C. Flowers,et al.  Solar Radiation: An Anomalous Decrease of Direct Solar Radiation , 1965, Science.

[9]  G. Kent,et al.  Laser Probing the Lower Atmosphere , 1966 .

[10]  A. Pittock A Thin Stable Layer of Anomalous Ozone and Dust Content , 1966 .

[11]  J. Rosen Correlation of Dust and Ozone in the Stratosphere , 1966, Nature.

[12]  J. P. Friend Properties of the stratospheric aerosol , 1966 .

[13]  Giorgio Fiocco,et al.  Stratospheric aerosol layer during 1964 and 1965. , 1967 .

[14]  G. Kent,et al.  High altitude atmospheric scattering of light from a laser beam , 1967 .

[15]  J. Rosen Simultaneous dust and ozone soundings over North and central America , 1968 .

[16]  B. Hicks,et al.  Global spread of volcanic dust from the Bali eruption of 1963 , 1968 .

[17]  L. Elterman,et al.  Features of tropospheric and stratospheric dust. , 1969, Applied optics.

[18]  F. Volz Atmospheric turbidity after the agung eruption of 1963 and size distribution of the volcanic aerosol , 1970 .

[19]  G. Cotton,et al.  Physical Sciences: Normal Incidence Radiation Trends on Mauna Loa, Hawaii , 1972, Nature.

[20]  D. Hofmann,et al.  Sulfuric Acid Droplet Formation and Growth in the Stratosphere After the 1982 Eruption of El Chich�n , 1983, Science.

[21]  M. Rampino,et al.  Volcanic eruptions in the Mediterranean before A.D. 630 from written and archaeological sources , 1983 .

[22]  D. Hofmann,et al.  Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon , 1983 .

[23]  D. Hofmann,et al.  On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud , 1987 .

[24]  M. McCormick,et al.  SAGE II aerosol data validation and initial data use: An introduction and overview , 1989 .

[25]  R. Turco,et al.  Self-limiting physical and chemical effects in volcanic eruption clouds , 1989 .

[26]  J. Hansen,et al.  Climate forcing by stratospheric aerosols , 1992 .

[27]  S. Young,et al.  Southern Hemisphere Lidar Measurements of the Aerosol Clouds from Mt. Pinatubo and Mt. Hudson , 1992 .

[28]  M. Prather,et al.  Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo Case Study , 1992 .

[29]  Charles R. Trepte,et al.  Tropical stratospheric circulation deduced from satellite aerosol data , 1992, Nature.

[30]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[31]  W. Grant,et al.  Ozone and Aerosol Changes During the 1991-1992 Airborne Arctic Stratospheric Expedition , 1993, Science.

[32]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[33]  M. Pitts,et al.  In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption of Mount Pinatubo: Effect of Reactions on Sulfate Aerosol , 1993, Science.

[34]  M. Chanin,et al.  2. Morphology and dynamics of the Pinatubo aerosol layer in the northern hemisphere as detected from a ship-borne lidar , 1993 .

[35]  1. Spatial and temporal evolution of the optical thickness of the Pinatubo aerosol cloud in the northern hemisphere from a network of ship‐borne and stationary lidars , 1993 .

[36]  M. Pitts,et al.  Relationships between Optical Extinction, Backscatter and Aerosol Surface and Volume in the Stratosphere following the Eruption of Mt. Pinatubo , 1993 .

[37]  Anthony J. Baran,et al.  New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption , 1994 .

[38]  P. B. Russell,et al.  Physical and optical properties of the Pinatubo volcanic aerosol: Aircraft observations with impactors and a Sun‐tracking photometer , 1994 .

[39]  O. Toon,et al.  Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption , 1994 .

[40]  Terry Deshler,et al.  In situ measurements of Pinatubo aerosol over Kiruna on four days between 18 January and 13 February 1992 , 1994 .

[41]  Yi-Chung Rau,et al.  Latitudinal lidar mapping of stratospheric particle layers , 1994 .

[42]  S. Bekki Oxidation of volcanic SO2: A sink for stratospheric OH and H2O , 1995 .

[43]  R. A. Plumb A “tropical pipe” model of stratospheric transport , 1996 .

[44]  J. Haigh,et al.  The role of microphysical and chemical processes in prolonging the climate forcing of the Toba Eruption , 1996 .

[45]  R. Stothers Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960 , 1996 .

[46]  A. King,et al.  Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia , 1996 .

[47]  R. Stothers Stratospheric aerosol clouds due to very large volcanic eruptions of the early twentieth century: Effective particle sizes and conversion from pyrheliometric to visual optical depth , 1997 .

[48]  P. Hamill,et al.  The Life Cycle of Stratospheric Aerosol Particles , 1997 .

[49]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[50]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[51]  C. Timmreck,et al.  A one and half year interactive MA/ECHAM4 simulation of Mount Pinatubo Aerosol , 1999 .

[52]  C. Timmreck,et al.  Simulation of Mt. Pinatubo Volcanic Aerosol with the Hamburg Climate Model ECHAM4 , 1999 .

[53]  A. Robock Volcanic eruptions and climate , 2000 .

[54]  G. Pitari,et al.  Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers , 2002 .

[55]  R. Stothers Cloudy and clear stratospheres before A.D. 1000 inferred from written sources , 2002 .

[56]  A. Robock,et al.  Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption , 2002 .

[57]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[58]  J. Liley,et al.  Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon‐borne instruments , 2003 .

[59]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[60]  W. Rose,et al.  Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice , 2004 .

[61]  W. Rose,et al.  Re‐evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors , 2004 .

[62]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[63]  A. Robock,et al.  Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models , 2006 .

[64]  D. Weisenstein,et al.  Global 2-D intercomparison of sectional and modal aerosol modules , 2006 .

[65]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[66]  A. Robock,et al.  Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption , 2006 .

[67]  A. Robock,et al.  Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition , 2007 .

[68]  L. Thomason,et al.  SAGE II measurements of stratospheric aerosol properties at non-volcanic levels , 2007 .

[69]  C. Sweeney,et al.  On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2 , 2007 .

[70]  Olaf Morgenstern,et al.  Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model , 2007 .

[71]  A. Bourassa,et al.  Stratospheric aerosol retrieval with optical spectrograph and infrared imaging system limb scatter measurements , 2007 .

[72]  J. M. Reeves,et al.  Steady-state aerosol distributions in the extra-tropical, lower stratosphere and the processes that maintain them , 2008 .

[73]  T. Deshler A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol , 2008 .

[74]  J. M. Reeves,et al.  Comparison of aerosol extinction coefficients, surface area density, and volume density from SAGE II and in situ aircraft measurements , 2008 .

[75]  Arlin J. Krueger,et al.  El Chichon: The genesis of volcanic sulfur dioxide monitoring from space , 2008 .

[76]  C. Timmreck,et al.  Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions , 2009 .

[77]  John E. Barnes,et al.  Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado , 2009 .

[78]  Larry W. Thomason,et al.  Tropical stratospheric aerosol layer from CALIPSO lidar observations , 2009 .

[79]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[80]  C. Timmreck,et al.  Initial fate of fine ash and sulfur from large volcanic eruptions , 2009 .

[81]  C. Timmreck,et al.  Aerosol size confines climate response to volcanic super‐eruptions , 2010 .

[82]  M. Guirlet,et al.  Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008 , 2010 .

[83]  C. Timmreck,et al.  The global middle-atmosphere aerosol model MAECHAM5-SAM2: comparison with satellite and in-situ observations , 2010 .

[84]  B. Kravitz,et al.  Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions , 2010 .

[85]  C. Timmreck,et al.  Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions , 2012, Climate Dynamics.

[86]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[87]  R. Garcia,et al.  On the Determination of Age of Air Trends from Atmospheric Trace Species , 2011 .

[88]  Robert Loughman,et al.  SCIAMACHY stratospheric aerosol extinction profile retrieval using the OMPS/LP algorithm , 2011 .

[89]  The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate , 2011 .

[90]  J. Pommereau,et al.  Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade , 2011 .

[91]  C. Timmreck,et al.  The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions , 2011 .

[92]  J. Kar,et al.  CALIPSO detection of an Asian tropopause aerosol layer , 2011 .

[93]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[94]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[95]  G. Mann,et al.  Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters , 2011 .

[96]  J. M. English,et al.  Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere , 2011 .

[97]  C. Timmreck Modeling the climatic effects of large explosive volcanic eruptions , 2012 .

[98]  L. Oman,et al.  The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo , 2012 .

[99]  Luke D. Oman,et al.  Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption , 2012 .

[100]  M. Chin,et al.  Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments , 2012 .

[101]  E. J. Llewellyn,et al.  OSIRIS A Decade of Scattered Light , 2012 .

[102]  T. Crowley,et al.  Technical details concerning development of a 1200 yr proxy index for global volcanism , 2012 .

[103]  L. Thomason,et al.  Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005 , 2012 .

[104]  Adam E. Bourassa,et al.  Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport , 2012, Science.

[105]  C. Boone,et al.  Sulfur dioxide (SO 2 ) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude , 2013 .

[106]  J. P. Thayer,et al.  Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol , 2013 .

[107]  R. Stothers,et al.  Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978 , 2013 .

[108]  J. M. English,et al.  Microphysical simulations of large volcanic eruptions: Pinatubo and Toba , 2013 .

[109]  Aerosol Chemistry Interactions After the Mt. Pinatubo Eruption , 2013 .

[110]  Amy H. Butler,et al.  On the lack of stratospheric dynamical variability in low‐top versions of the CMIP5 models , 2013 .

[111]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[112]  D. MacMartin,et al.  Studying geoengineering with natural and anthropogenic analogs , 2013, Climatic Change.

[113]  Veronika Eyring,et al.  Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments , 2013 .

[114]  Didier Rault,et al.  The OMPS Limb Profiler Environmental Data Record Algorithm Theoretical Basis Document and Expected Performance , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[115]  C. Timmreck,et al.  Volcanic sulfate deposition to Greenland and Antarctica: A modeling sensitivity study , 2013 .

[116]  H. Pumphrey,et al.  Observations of volcanic SO 2 from MLS on Aura , 2014 .

[117]  C. Timmreck,et al.  The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure , 2014 .

[118]  Jean-Francois Lamarque,et al.  A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models , 2014 .

[119]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[120]  H. L. Miller,et al.  The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer , 2014 .

[121]  C. Sweeney,et al.  Improving stratospheric transport trend analysis based on SF6 and CO2 measurements , 2014 .

[122]  Makiko Sato,et al.  Total volcanic stratospheric aerosol optical depths and implications for global climate change , 2014 .

[123]  Luke D. Oman,et al.  Modifications of the quasi‐biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer , 2014 .

[124]  G. Mann,et al.  Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model , 2014 .

[125]  C. Timmreck,et al.  Quasi-biennial oscillation of the tropical stratospheric aerosol layer , 2014 .

[126]  Ulrike Niemeier,et al.  What is the limit of climate engineering by stratospheric injection of SO 2 , 2015 .

[127]  M Höpfner,et al.  Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC , 2015, Journal of geophysical research. Atmospheres : JGR.

[128]  V. Masson‐Delmotte,et al.  Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years , 2015 .

[129]  D. Degenstein,et al.  Merging the OSIRIS and SAGE II stratospheric aerosol records , 2015 .

[130]  J. Sheng,et al.  A perturbed parameter model ensemble to investigate Mt. Pinatubo's 1991 initial sulfur mass emission , 2015 .

[131]  Larry W. Thomason,et al.  Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results , 2015 .

[132]  B. Santer,et al.  Observed multivariable signals of late 20th and early 21st century volcanic activity , 2015 .

[133]  Shingo Watanabe,et al.  The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results , 2015 .

[134]  R. Neely,et al.  Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer , 2015, Geophysical research letters.

[135]  J. Berry,et al.  Tropical sources and sinks of carbonyl sulfide observed from space , 2015 .

[136]  J. Sheng,et al.  Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol‐chemistry‐climate model predictions and validation , 2015 .

[137]  J. Sheng,et al.  A perturbed parameter model ensemble to investigate 1991 Mt Pinatubo's initial sulfur mass emission , 2015 .

[138]  C. Timmreck,et al.  Evolving particle size is the key to improved volcanic forcings , 2015 .

[139]  C. Boone,et al.  Sulfur dioxide (SO 2 ) from MIPAS in the upper troposphere and lower stratosphere 2002-2012 , 2015 .

[140]  T. Deshler,et al.  On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements , 2015 .

[141]  J. Marotzke,et al.  Forcing, feedback and internal variability in global temperature trends , 2015, Nature.

[142]  M. Winstrup,et al.  Timing and climate forcing of volcanic eruptions for the past 2,500 years , 2015, Nature.

[143]  Fiona Tummon,et al.  The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6 , 2016 .

[144]  J. Grooß,et al.  Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds , 2016 .

[145]  A. Schmidt,et al.  Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM) , 2016 .

[146]  V. Aquila,et al.  Time-varying changes in the simulated structure of the Brewer–Dobson Circulation , 2016 .

[147]  Kooiti Masuda,et al.  The cost of stratospheric climate engineering revisited , 2017, Mitigation and Adaptation Strategies for Global Change.

[148]  V. Aquila,et al.  Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study , 2016 .

[149]  C. Timmreck,et al.  Stratospheric aerosol—Observations, processes, and impact on climate , 2016 .

[150]  M. Toohey,et al.  Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages , 2016, Climatic Change.

[151]  G. Pitari,et al.  Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species , 2016 .

[152]  J. Lamarque,et al.  AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6 , 2016 .

[153]  B. Stevens,et al.  Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations , 2016 .

[154]  G. Pitari,et al.  Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time , 2016 .

[155]  Valentina Aquila,et al.  Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide , 2016 .

[156]  J. Schmitt,et al.  Stratospheric age of air variations between 1600 and 2100 , 2016 .

[157]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[158]  Anja Schmidt,et al.  Emergence of healing in the Antarctic ozone layer , 2016, Science.

[159]  C. Timmreck,et al.  The impact of wave‐mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions , 2016 .

[160]  A. Schmidt,et al.  VolcanEESM: Global volcanic sulphur dioxide (SO2) emissions database from 1850 to present , 2016 .

[161]  Hauke Schmidt,et al.  Changing transport processes in the stratosphere by radiative heating of sulfate aerosols , 2017 .

[162]  Andrew Gettelman,et al.  Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM) , 2017 .

[163]  Olivier Boucher,et al.  Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO 2 injection studied with the LMDZ-S3A model , 2017 .

[164]  James S. A. Brooke,et al.  Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora , 2017 .

[165]  M. Mills,et al.  The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere , 2017, Geophysical research letters.

[166]  B. Legras,et al.  Significant Contributions of Volcanic Aerosols to Decadal Changes in the Stratospheric Circulation , 2017 .

[167]  Rudolf Richter,et al.  Maja Algorithm Theoretical Basis Document , 2017 .

[168]  C. Cassou,et al.  Impact of explosive volcanic eruptions on the main climate variability modes , 2017 .

[169]  C. Brühl,et al.  Stratospheric aerosol data records for the climate change initiative: Development, validation and application to chemistry-climate modelling , 2017 .

[170]  T. Clarmann,et al.  MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere , 2018 .

[171]  Gabriele Curci,et al.  Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols , 2018 .