Expectation formulas and isoperimetric properties for non‐isotropic Boolean models
暂无分享,去创建一个
[1] W. Blaschke. Integralgeometrie 21. ber Schiebungen: Aus Vortrgen in Breslau und Dresden im Oktober 1936 , 1937 .
[2] Wolfgang Weil,et al. Densities for stationary random sets and point processes , 1984, Advances in Applied Probability.
[3] G. Matheron. Random Sets and Integral Geometry , 1976 .
[4] R. E. Miles. THE FUNDAMENTAL FORMULA OF BLASCHKE IN INTEGRAL GEOMETRY AND GEOMETRICAL PROBABILITY, AND ITS ITERATION, FOR DOMAINS WITH FIXED ORIENTATIONS , 1974 .
[5] M. Zähle. Curvature Measures and Random Sets, I , 1984 .
[6] Albrecht M. Kellerer,et al. Counting figures in planar random configurations , 1985, Journal of Applied Probability.
[7] P. Davy. Projected thick sections through multi-dimensional particle aggregates , 1976, Journal of Applied Probability.
[8] M. Zhle. Curvature measures and random sets II , 1986 .
[9] H. Kellerer. Minkowski functionals of Poisson processes , 1984 .
[10] P. Davy. Stereology - a statistical viewpoint , 1978, Bulletin of the Australian Mathematical Society.
[11] Anton E. Mayer. Theorie der konvexen Körper , 1936 .
[12] R. E. Miles. Estimating aggregate and overall characteristics from thick sections by transmission microscopy , 1976 .
[13] L. Santaló. Integral geometry and geometric probability , 1976 .
[14] T. Bonnesen,et al. Theorie der Konvexen Körper , 1934 .
[15] Albrecht M. Kellerer,et al. On the number of clumps resulting from the overlap of randomly placed figures in a plane , 1983, Journal of Applied Probability.
[16] Wolfgang Weil,et al. Point Processes of Cylinders, Particles and Flats , 1987 .