Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology

Abstract Dendrimers are hyperbranched macromolecules having a perfectly defined and multifunctionalized structure, constituted of branches emanating radially from a central core. The structure of dendrimers is particularly modular, and can incorporate in different parts coordination complexes. In this review, we will present the interplay between dendrimers and coordination chemistry in three main fields: catalysis, materials, and biology. Most of the examples will be taken from the work done with phosphorus-containing dendrimers, but the pioneering work carried out with other dendrimers will be also presented. One of the major improvements that metallodendrimers have afforded concerning catalysis is their easy recovery and reuse, bridging the gap between homogeneous and heterogeneous catalysis. Another major improvement concerns the “dendritic effect” which can afford impressive outcomes concerning the increase of yield and of enantioselectivity, together with a decrease of the leaching of metals, and consequently of waste. Dendrimers can be used also for the synthesis and stabilization of metallic nanoparticles, for the modification of metallic surfaces at the nanometric scale, and for the synthesis of mesoscopically ordered hybrid materials. Finally metallodendrimers have high potency against cancerous cell lines, and they appear to operate via a different mechanism of action compared with native metallodrugs, opening new avenues for the search of improved anti-cancer agents.

[1]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[2]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[3]  L. Gade,et al.  Immobilisation of the Pyrphos Ligand on Soluble Hyperbranched Supports and Use in Rhodium-Catalysed Hydrogenation in Ionic Liquids , 2009 .

[4]  M. Peruzzini,et al.  Number of terminal groups versus generation of the dendrimer, which criteria influence the catalytic properties? , 2012 .

[5]  M. Peruzzini,et al.  Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous media. , 2009, Dalton transactions.

[6]  A. Caminade,et al.  An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles , 2010 .

[7]  A. Caminade,et al.  Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains , 2000 .

[8]  A. Caminade,et al.  Giant dendrimer-like particles from nanolatexes. , 2004, Chemical communications.

[9]  A. Caminade,et al.  DFT study of structure, IR and Raman spectra of dendrimer with PNPS linkages and its complexation with gold , 2015 .

[10]  D. Astruc,et al.  Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. , 2008, Accounts of chemical research.

[11]  Paul C J Kamer,et al.  Dendrimers as support for recoverable catalysts and reagents. , 2002, Chemical reviews.

[12]  I. Cuadrado,et al.  Organometallic dendrimers with transition metals , 1999 .

[13]  L. Bronstein,et al.  Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. , 2011, Chemical reviews.

[14]  A. Caminade,et al.  Dendritic phosphoramidite ligands for Rh-catalyzed [2+2+2] cycloaddition reactions: unprecedented enhancement of enantiodiscrimination. , 2012, Chemical communications.

[15]  A. Caminade,et al.  Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nanoparticle networks. , 2009, Nanoscale.

[16]  L. Kèlland,et al.  The resurgence of platinum-based cancer chemotherapy , 2007, Nature Reviews Cancer.

[17]  S. Mukherji,et al.  Dendrimers in biosensors: Concept and applications , 2011 .

[18]  Victorio Cadierno,et al.  Iminophosphine Palladium Complexes in Catalytic Stille Coupling Reactions: From Monomers to Dendrimers , 2002 .

[19]  A. Caminade,et al.  Versatile Complexation Ability of Very Large Phosphino-Terminated Dendrimers. , 1997, Inorganic Chemistry.

[20]  J. Majoral,et al.  From metallodrugs to metallodendrimers for nanotherapy in oncology: a concise overview. , 2012, Current medicinal chemistry.

[21]  A. Caminade,et al.  The behavior of Au55 nanoclusters on and in thiol-terminated dendrimer monolayers. , 2004, Small.

[22]  A. El Kadib,et al.  Low temperature synthesis of ordered mesoporous stable anatase nanocrystals: the phosphorus dendrimer approach. , 2013, Nanoscale.

[23]  G. Newkome,et al.  Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.

[24]  J. Majoral,et al.  Copper in dendrimer synthesis and applications of copper–dendrimer systems in catalysis: a concise overview , 2013 .

[25]  A. Caminade,et al.  PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity , 2013 .

[26]  Oliver Reiser,et al.  Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. , 2014, Accounts of chemical research.

[27]  J. Trosko,et al.  Platinum Compounds: a New Class of Potent Antitumour Agents , 1969, Nature.

[28]  C. Mirkin,et al.  Ligand Design for Electrochemically Controlling Stoichiometric and Catalytic Reactivity of Transition Metals. , 1998, Angewandte Chemie.

[29]  Richard M Crooks,et al.  Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. , 2005, The journal of physical chemistry. B.

[30]  A. Caminade,et al.  Enhanced catalytic properties of copper in O- and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands. , 2006, Journal of the American Chemical Society.

[31]  A. Caminade,et al.  Phosphorus dendrimers for the controlled elaboration of organic–inorganic materials , 2005 .

[32]  G. Salamończyk,et al.  A divergent synthesis of thiophosphate-based dendrimers , 2000 .

[33]  Jean M. J. Fréchet,et al.  The Dendrimer Effect in Homogeneous Catalysis , 2006 .

[34]  Manfred T. Reetz,et al.  Allylic Substitution with Dendritic Palladium Catalysts in a Continuously Operating Membrane Reactor , 1999 .

[35]  A. Caminade,et al.  Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. , 2009, Chemistry.

[36]  A. Caminade,et al.  Comparative EPR studies of Cu(II)-conjugated phosphorous-dendrimers in the absence and presence of normal and cancer cells , 2014 .

[37]  J. C. Roberts,et al.  Using starburst dendrimers as linker molecules to radiolabel antibodies. , 1990, Bioconjugate chemistry.

[38]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[39]  R. Barkley,et al.  Electrochemical Reduction of CO2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium , 1994 .

[40]  A. Caminade,et al.  Specific functionalization on the surface of dendrimers , 1996 .

[41]  Anne-Marie Caminade,et al.  The dendritic effect illustrated with phosphorus dendrimers. , 2015, Chemical Society reviews.

[42]  Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. , 2011, Topics in organometallic chemistry.

[43]  A. Caminade,et al.  Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. , 2008, Chemistry.

[44]  Jean-Louis Reymond,et al.  A strong positive dendritic effect in a peptide dendrimer-catalyzed ester hydrolysis reaction. , 2004, Journal of the American Chemical Society.

[45]  R. Engel,et al.  Phosphonium cascade molecules , 1990 .

[46]  A. Caminade,et al.  Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. , 2013, Molecular pharmaceutics.

[47]  Youzhu Yuan,et al.  Enhanced stability of charged dendrimer-encapsulated Pd nanoparticles in ionic liquids. , 2008, Chemical communications.

[48]  Iñaki Morao,et al.  Quantitative evaluation of the catalytic activity of dendrimers with only one active center at the core: application to the nitroaldol (Henry) reaction. , 2004, Journal of the American Chemical Society.

[49]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[50]  A. Caminade,et al.  Synthesis and application of phosphorus dendrimer immobilized azabis(oxazolines). , 2007, Organic letters.

[51]  A. Caminade,et al.  Nanomaterials based on phosphorus dendrimers. , 2004, Accounts of chemical research.

[52]  A. Caminade,et al.  Immobilization of Redox-Active Ligands on an Electrode: The Dendrimer Route. , 2001, Angewandte Chemie.

[53]  A. Caminade,et al.  The key role of the scaffold on the efficiency of dendrimer nanodrugs , 2015, Nature Communications.

[54]  D. Astruc,et al.  Dendritic catalysis—Basic concepts and recent trends , 2013 .

[55]  H. Takaya,et al.  Ruthenium-catalyzed aldol and Michael reactions of nitriles. Carbon-carbon bond formation by .alpha.-C-H activation of nitriles. , 1995 .

[56]  A. Caminade,et al.  Ruthenium complexes with dendritic ferrocenyl phosphanes: synthesis, characterization, and application in the catalytic redox isomerization of allylic alcohols. , 2015, Chemistry.

[57]  J. Majoral,et al.  Large Dipole Moments of Phosphorus-Containing Dendrimers , 1997 .

[58]  A. Caminade,et al.  Synthesis of di-, tri-, and polyphosphine and phosphene transition metal complexes , 1991 .

[59]  Wolfgang Knoll,et al.  Graded‐Bandgap Quantum‐ Dot‐Modified Nanotubes: A Sensitive Biosensor for Enhanced Detection of DNA Hybridization , 2007 .

[60]  A. Caminade,et al.  Efficient and recyclable rare earth-based catalysts for Friedel–Crafts acylations under microwave heating: dendrimers show the way , 2013 .

[61]  A. Caminade,et al.  Regioselective Gold Complexation within the Cascade Structure of Phosphorus‐Containing Dendrimers , 1998 .

[62]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[63]  M. Peruzzini,et al.  Synthesis of Dendrimers Terminated by Bis(diphenylphosphinomethyl)amino Ligands and Use of Their Palladium Complexes for Catalyzing C−C Cross-Coupling Reactions , 2008 .

[64]  M. Richard-Plouet,et al.  A strongly positive dendrimer effect in asymmetric catalysis: allylic aminations with Pyrphos-palladium functionalised PPI and PAMAM dendrimers. , 2003, Chemical communications.

[65]  R. Sheldon,et al.  Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers' Stones or Trojan Horses? , 1998 .

[66]  A. Caminade,et al.  New chiral phosphorus-containing dendrimers with ferrocenes on the periphery , 2001 .

[67]  Nathalie Launay,et al.  A General Synthetic Strategy for Neutral Phosphorus‐Containing Dendrimers , 1994 .

[68]  Mona C. Wells,et al.  Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 10. Preparation and Properties of Chemically Sensitive Dendrimer Surfaces , 1996 .

[69]  Hai‐Bo Yang,et al.  Recent progress in the construction of cavity-cored supramolecular metallodendrimers via coordination-driven self-assembly. , 2014, Chemical communications.

[70]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[71]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[72]  A. Caminade,et al.  Synthesis of Dendritic β‐Diketones and Their Application in Copper‐Catalyzed Diaryl Ether Formation , 2012 .

[73]  Nathalie Launay,et al.  Phosphorus-Containing Dendrimers. Easy Access to New Multi-Difunctionalized Macromolecules. , 1996, The Journal of organic chemistry.

[74]  D. Astruc,et al.  Dendritic catalysis: Major concepts and recent progress , 2006 .

[75]  R. Crooks,et al.  Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis , 1999 .

[76]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[77]  Anthony L. Spek,et al.  Palladium complexes of phosphine functionalised carbosilane dendrimers as catalysts in a continuous flow membrane reactor , 1999 .

[78]  A. Caminade,et al.  Redox control of a dendritic ferrocenyl-based homogeneous catalyst. , 2015, Angewandte Chemie.

[79]  Yanmei He,et al.  Asymmetric hydrogenation in the core of dendrimers. , 2014, Accounts of chemical research.

[80]  B. González,et al.  Redox-active ferrocenyl dendrimers and polymers in solution and immobilised on electrode surfaces , 1999 .

[81]  U. Kragl,et al.  Selective Hydrovinylation of Styrene in a Membrane Reactor: Use of Carbosilane Dendrimers with Hemilabile P,O Ligands. , 1999, Angewandte Chemie.

[82]  A. Caminade,et al.  Phosphorus-Containing Dendrimers as Multidentate Ligands: Palladium, Platinum, and Rhodium Complexes , 1997 .

[83]  Schmid,et al.  Naked Au55 clusters: dramatic effect of a thiol-terminated dendrimer , 2000, Chemistry.

[84]  V. Balzani,et al.  Designing Dendrimers Based on Transition-Metal Complexes. Light-Harvesting Properties and Predetermined Redox Patterns , 1998 .

[85]  A. Caminade,et al.  Self-assembly of water-soluble dendrimers into thermoreversible hydrogels and macroscopic fibers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[86]  H. Dijkstra,et al.  SCS-pincer palladium-catalyzed auto-tandem catalysis using dendritic catalysts in semi-permeable compartments. , 2011, Dalton transactions.

[87]  Michel Keller,et al.  Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: an efficient and recyclable system for drug synthesis. , 2013, Angewandte Chemie.

[88]  A. Caminade,et al.  A third generation chiral phosphorus-containing dendrimer as ligand in Pd-catalyzed asymmetric allylic alkylation , 2005 .

[89]  A. Caminade,et al.  Phosphine-terminated dendrimers , 1998 .

[90]  A. Caminade,et al.  Macrocyclic Core Phosphorus Dendrimers Covered on the Surface by N,P Ligands , 2011 .

[91]  A. Caminade,et al.  Dendrimeric phosphines in asymmetric catalysis. , 2008, Chemical Society reviews.

[92]  V. Lynch,et al.  Redox-switchable ring-closing metathesis: catalyst design, synthesis, and study. , 2013, Chemistry.

[93]  Jean-Claude Daran,et al.  Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery , 2000 .

[94]  Ryoji Noyori Prof. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .

[95]  A. Caminade,et al.  Phosphorus dendrimers possessing metallic groups in their internal structure (core or branches): Syntheses and properties , 2005 .

[96]  R. Breinbauer,et al.  Cooperative Asymmetric Catalysis with Dendrimeric [Co(salen)] Complexes , 2000 .

[97]  A decanuclear ruthenium(II)–polypyridine complex: synthesis, absorption spectrum, luminescence and electrochemical behaviour , 1991 .

[98]  R. Crooks,et al.  Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts , 2000 .

[99]  E. W. Meijer,et al.  Noncovalently functionalized dendrimers as recyclable catalysts. , 2001, Journal of the American Chemical Society.

[100]  S. Bellemin‐Laponnaz,et al.  "Catalysis in a tea bag": synthesis, catalytic performance and recycling of dendrimer-immobilised bis- and trisoxazoline copper catalysts. , 2009, Chemistry.

[101]  J. Majoral,et al.  Dendrimers Containing Zwitterionic [Phosphonium Anionic Zirconocene(IV)] Complexes , 1999 .

[102]  A. Caminade,et al.  Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[103]  J. Majoral,et al.  Phosphorus-Containing Dendrimers and Their Transition Metal Complexes as Efficient Recoverable Multicenter Homogeneous Catalysts in Organic Synthesis , 2000 .

[104]  D. M. Grove,et al.  Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.

[105]  Wolfgang Knoll,et al.  Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. , 2008, Small.

[106]  A. El Kadib,et al.  Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity. , 2015, Chemistry.

[107]  B. Pugin,et al.  Dendrimers Containing Chiral Ferrocenyl Diphosphine Ligands for Asymmetric Catalysis , 1998 .

[108]  David K. Smith,et al.  Dendritic supermolecules--towards controllable nanomaterials. , 2006, Chemical communications.

[109]  Anne-Marie Caminade,et al.  Synthesis of bowl-shaped dendrimers from generation 1 to generation 8 , 1997 .

[110]  A. Caminade,et al.  gem-Bisphosphonate-Ended Group Dendrimers: Design and Gadolinium Complexing Properties , 2009 .

[111]  J. Reek,et al.  Site-isolation effects in a dendritic nickel catalyst for the oligomerization of ethylene. , 2004, Journal of the American Chemical Society.

[112]  M. Casanove,et al.  DENDRIMER SURFACE CHEMISTRY. FACILE ROUTE TO POLYPHOSPHINES AND THEIR GOLD COMPLEXES , 1995 .

[113]  Mary Kate Boggiano,et al.  New Mesotextured Hybrid Materials Made from Assemblies of Dendrimers and Titanium(IV)-Oxo-Organo Clusters. , 2000, Angewandte Chemie.

[114]  A. El Kadib,et al.  Viologen-based dendritic macromolecular asterisks: synthesis and interplay with gold nanoparticles. , 2014, Chemical communications.

[115]  P. Dalko,et al.  In the golden age of organocatalysis. , 2004, Angewandte Chemie.

[116]  Amy S. H. King,et al.  Catalysis inside dendrimers. , 2002, Chemical Society reviews.

[117]  S. Gruner,et al.  Nanohybrids from liquid crystalline extended amphiphilic dendrimers. , 2004, Journal of the American Chemical Society.

[118]  A. Caminade,et al.  An efficient and recyclable dendritic catalyst able to dramatically decrease palladium leaching in Suzuki couplings , 2012 .

[119]  I. Cuadrado,et al.  Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors , 1997 .

[120]  D. Astruc,et al.  The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .

[121]  Anne-Marie Caminade,et al.  Uses of Dendrimers for DNA Microarrays , 2006, Sensors (Basel, Switzerland).

[122]  A. Caminade,et al.  Metallated Phthalocyanines as the Core of Dendrimers - Synthesis and Spectroscopic Studies , 2007 .

[123]  H. Tan,et al.  Smart stimuli-responsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. , 2014, Journal of the American Chemical Society.

[124]  Dong Ha Kim,et al.  Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method , 2009 .

[125]  L. Gade,et al.  Immobilisation of the BINAP Ligand on Dendrimers and Hyperbranched Polymers: Dependence of the Catalytic Properties on the Linker Unit , 2009 .

[126]  J. Fréchet,et al.  Dendrimers at surfaces and interfaces: chemistry and applications , 2001 .

[127]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[128]  R. Haag,et al.  Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. , 2004, Chemistry.

[129]  A. Caminade,et al.  New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis , 2007 .

[130]  A. Caminade,et al.  Organic−Inorganic Hybrid Materials Incorporating Phosphorus-Containing Dendrimers , 2000 .

[131]  A. Caminade,et al.  Dendrimers for drug delivery. , 2014, Journal of materials chemistry. B.

[132]  A. Caminade,et al.  Use of Functional Dendritic Macromolecules for the Design of Metal Oxo Based Hybrid Materials , 2003 .

[133]  B. Boury,et al.  Hybrid Xerogels from Dendrimers and Arborols , 1998 .

[134]  A. Caminade,et al.  Poly(phosphorhydrazone) metallodendrimers. A review , 2014 .

[135]  A. Baiker,et al.  Asymmetric catalysis at chiral metal surfaces. , 2007, Chemical reviews.

[136]  A. Caminade,et al.  Dendrimers and nanomedicine: multivalency in action , 2009 .

[137]  Jeffrey T. Miller,et al.  Redox control of a ring-opening polymerization catalyst. , 2011, Journal of the American Chemical Society.

[138]  A. Caminade,et al.  Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer , 1997 .

[139]  Dong Ha Kim,et al.  Bioactive multilayer thin films of charged N,N-disubstituted hydrazine phosphorus dendrimers fabricated by layer-by-layer self-assembly , 2008 .

[140]  Hierarchically porous nanostructures through phosphonate-metal alkoxide condensation and growth using functionalized dendrimeric building blocks. , 2011, Chemical communications.

[141]  Liviu Nicu,et al.  Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin–gold nanoparticles interaction with biotinylated DNA , 2005 .

[142]  J. Reek,et al.  Transition Metal Catalysis Using Functionalized Dendrimers. , 2001, Angewandte Chemie.

[143]  R. Varma,et al.  Magnetically retrievable catalysts for asymmetric synthesis , 2015 .

[144]  A. Caminade,et al.  Water-soluble phosphorus-containing dendrimers , 2005 .