Hot and Heterogenous High‐3He/4He Components: New Constraints From Proto‐Iceland Plume Lavas From Baffin Island

The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived 3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8 RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5 RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3 RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have 87Sr/86Sr = 0.703008–0.703021, 143Nd/144Nd = 0.513094–0.513128, 176Hf/177Hf = 0.283265–0.283284, 206Pb/204Pb = 17.7560–17.9375, 3He/4He up to 39.9 RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence of two geochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.

[1]  B. Romanowicz,et al.  Primitive Helium Is Sourced From Seismically Slow Regions in the Lowermost Mantle , 2019, Geochemistry, Geophysics, Geosystems.

[2]  M. Kurz,et al.  Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume , 2019, Chemical Geology.

[3]  R. Carlson Analysis of lunar samples: Implications for planet formation and evolution , 2019, Science.

[4]  A. Mcnamara A review of large low shear velocity provinces and ultra low velocity zones , 2019, Tectonophysics.

[5]  S. Mukhopadhyay,et al.  Noble Gases: A Record of Earth's Evolution and Mantle Dynamics , 2019, Annual Review of Earth and Planetary Sciences.

[6]  J. Lupton,et al.  Hydrogen isotopes in high 3He/4He submarine basalts: Primordial vs. recycled water and the veil of mantle enrichment , 2019, Earth and Planetary Science Letters.

[7]  M. Jacksonc,et al.  Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume , 2019 .

[8]  B. Moine,et al.  182W evidence for core-mantle interaction in the source of mantle plumes , 2019, Geochemical Perspectives Letters.

[9]  C. Maden,et al.  The primordial He budget of the Earth set by percolative core formation in planetesimals , 2019, Geochemical Perspectives Letters.

[10]  J. Fitton,et al.  The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites , 2018, Geochimica et Cosmochimica Acta.

[11]  M. Perfit,et al.  The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter) , 2018, American Mineralogist.

[12]  T. Kleine,et al.  No 182W excess in the Ontong Java Plateau source , 2018 .

[13]  M. Norman,et al.  Tracking Hadean processes in modern basalts with 142-Neodymium , 2018 .

[14]  R. Carlson,et al.  Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source , 2018, Nature.

[15]  R. Carlson,et al.  Factors influencing the precision and accuracy of Nd isotope measurements by thermal ionization mass spectrometry , 2018 .

[16]  F. Stuart,et al.  142Nd/144Nd Inferences on the nature and origin of the source of high 3He/4He magmas , 2017 .

[17]  D. Hilton,et al.  Spatial distribution of helium isotopes in Icelandic geothermal fluids and volcanic materials with implications for location, upwelling and evolution of the Icelandic mantle plume , 2017 .

[18]  M. Kurz,et al.  Tungsten-182 heterogeneity in modern ocean island basalts , 2017, Science.

[19]  A. Sobolev,et al.  The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs , 2017 .

[20]  M. Kurz,et al.  Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins , 2017 .

[21]  T. Becker,et al.  Primordial helium entrained by the hottest mantle plumes , 2017, Nature.

[22]  F. Stuart,et al.  Nd inferences on the nature and origin of the source of high 3 He / 4 He magmas , 2017 .

[23]  K. Hirose,et al.  Persistence of strong silica-enriched domains in the Earth’s lower mantle , 2016, 1803.08026.

[24]  J. Day Evidence against an ancient non-chondritic mantle source for North Atlantic Igneous Province lavas , 2016 .

[25]  E. Gazel,et al.  Record of massive upwellings from the Pacific large low shear velocity province , 2016, Nature Communications.

[26]  A. Bouvier,et al.  Primitive Solar System materials and Earth share a common initial 142Nd abundance , 2016, Nature.

[27]  G. Haug,et al.  Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials , 2016 .

[28]  E. Garnero,et al.  Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle , 2016 .

[29]  L. Borg,et al.  A nucleosynthetic origin for the Earth’s anomalous 142Nd composition , 2016, Nature.

[30]  R. Carlson,et al.  Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts , 2016, Science.

[31]  M. Kurz,et al.  Geochemical evidence in the northeast Lau Basin for subduction of the Cook‐Austral volcanic chain in the Tonga Trench , 2016 .

[32]  John Millett,et al.  Controls of Mantle Potential Temperature and Lithospheric Thickness on Magmatism in the North Atlantic Igneous Province , 2016 .

[33]  W. White Isotopes, DUPAL, LLSVPs, and Anekantavada , 2015 .

[34]  G. Alvarado,et al.  Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution , 2015 .

[35]  B. Wood,et al.  The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides , 2015 .

[36]  D. Garbe‐Schönberg,et al.  How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot , 2015, Nature Communications.

[37]  P. Asimow,et al.  PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus , 2015 .

[38]  M. Jackson,et al.  Oceanic lavas sampling the high-3He/4He mantle reservoir: Primitive, depleted, or re-enriched? , 2014 .

[39]  S. King,et al.  Hotspot swells revisited , 2014 .

[40]  S. Rowland,et al.  Eruption Rates for Fernandina Volcano , 2014 .

[41]  J. Maclennan,et al.  Quantifying lithological variability in the mantle , 2014 .

[42]  E. Garnero,et al.  Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs , 2014 .

[43]  M. Kurz,et al.  Evidence for a broadly distributed Samoan‐plume signature in the northern Lau and North Fiji Basins , 2014 .

[44]  C. G. Macphersona,et al.  Osmium isotopes in Baffin Island and West Greenland picrites: , 2014 .

[45]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[46]  S. Kelley,et al.  Constraints on light noble gas partitioning at the conditions of spinel-peridotite melting , 2013 .

[47]  Katherine A. Kelley,et al.  Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin , 2013 .

[48]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[49]  D. Geist,et al.  Nickel and helium evidence for melt above the core–mantle boundary , 2013, Nature.

[50]  B. Romanowicz,et al.  Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity , 2012 .

[51]  M. Moreira,et al.  Helium and neon isotopes in São Miguel island basalts, Azores Archipelago: New constraints on the “low 3He” hotspot origin , 2012 .

[52]  S. Mukhopadhyay Early differentiation and volatile accretion recorded in deep-mantle neon and xenon , 2012, Nature.

[53]  F. Stuart,et al.  Melt inclusions in olivines from early Iceland plume picrites support high 3He/4He in both enriched and depleted mantle , 2012 .

[54]  C. Keen,et al.  The volcanic margins of the northern Labrador Sea: Insights to the rifting process , 2012 .

[55]  H. O’Neill,et al.  Analysis of 60 elements in 616 ocean floor basaltic glasses , 2012 .

[56]  T. Becker,et al.  Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data , 2012 .

[57]  M. Jackson,et al.  Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions , 2011 .

[58]  P. Tackley,et al.  A deep mantle origin for the primitive signature of ocean island basalt , 2011 .

[59]  R. Carlson,et al.  An ancient recipe for flood-basalt genesis , 2011, Nature.

[60]  Katherine A. Kelley,et al.  The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle , 2011 .

[61]  M. Boyet,et al.  146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula , 2011, Proceedings of the National Academy of Sciences.

[62]  M. Boyet,et al.  chondrites reveals a heterogeneous distribution of 142 Nd in the solar nebula , 2011 .

[63]  F. Albarède,et al.  The Solar System primordial lead , 2010 .

[64]  Sebastian Rost,et al.  Tracking deep mantle reservoirs with ultra-low velocity zones , 2010 .

[65]  Don Francis,et al.  Evidence for the survival of the oldest terrestrial mantle reservoir , 2010, Nature.

[66]  S. Nakai,et al.  Contamination introduced during rock sample powdering: Effects from different mill materials on trace element contamination , 2009 .

[67]  L. Larsen,et al.  Petrology of the Paleocene Picrites and Flood Basalts on Disko and Nuussuaq, West Greenland , 2009 .

[68]  D. Fornari,et al.  Primitive neon from the center of the Galápagos hotspot , 2009 .

[69]  F. Albarède,et al.  Mixing of isotopic heterogeneities in the Mauna Kea plume conduit , 2009 .

[70]  C. Herzberg,et al.  Petrological evidence for secular cooling in mantle plumes , 2009, Nature.

[71]  F. Stuart,et al.  Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187 Os/ 188 Os composition of the convecting mantle and the nature of high 3 He/ 4 He mantle , 2009 .

[72]  F. Stuart,et al.  Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3 He/ 4 He mantle , 2009 .

[73]  M. St-Onge,et al.  Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen , 2009 .

[74]  I. Bindeman,et al.  Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence for magmatic digestion and erosion of Pleistocene hyaloclastites , 2008 .

[75]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[76]  E. Garnero,et al.  Structure and Dynamics of Earth's Lower Mantle , 2008, Science.

[77]  K. Putirka Excess temperatures at ocean islands: Implications for mantle layering and convection , 2008 .

[78]  M. Kurz,et al.  Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He , 2008 .

[79]  M. Kurz,et al.  New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3 He/ 4 He mantle , 2007 .

[80]  V. Debaille,et al.  Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars , 2007, Nature.

[81]  Hubert Staudigel,et al.  The return of subducted continental crust in Samoan lavas , 2007, Nature.

[82]  M. Perfit,et al.  Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling , 2007 .

[83]  M. Kurz,et al.  The role of lithospheric gabbros on the composition of Galapagos lavas , 2007 .

[84]  S. Kelley,et al.  Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene , 2007 .

[85]  K. Subbarao,et al.  Where on Earth is the enriched Hadean reservoir , 2006 .

[86]  S. Kelley,et al.  Helium in Earth’s early core , 2006 .

[87]  B. Kieffer,et al.  High‐precision isotopic characterization of USGS reference materials by TIMS and MC‐ICP‐MS , 2006 .

[88]  P. Kelemen,et al.  Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland , 2006 .

[89]  S. Hart,et al.  Mantle Pb paradoxes: the sulfide solution , 2005 .

[90]  M. Kurz,et al.  Helium solubility in olivine and implications for high 3He/4He in ocean island basalts , 2005, Nature.

[91]  S. Goldstein,et al.  Evolution of helium isotopes in the Earth's mantle , 2005, Nature.

[92]  M. Manga,et al.  Seismological constraints on a possible plume root at the core–mantle boundary , 2005, Nature.

[93]  K. Grönvold,et al.  High-3He/4He, depleted mantle and low-δ18O, recycled oceanic lithosphere in the source of central Iceland magmatism , 2005 .

[94]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[95]  F. Stuart,et al.  Coherent He–Nd–Sr isotope trends in high 3He/4He basalts: implications for a common reservoir, mantle heterogeneity and convection , 2004 .

[96]  J. Eiler,et al.  Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr‐Nd‐Os‐O isotope systematics of Baffin Island picrites , 2004 .

[97]  M. Manga,et al.  LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS , 2004 .

[98]  K. Farley,et al.  Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end‐member: Evidence from the Samoan Volcanic Chain , 2004 .

[99]  A. Solow,et al.  Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project , 2004 .

[100]  M. Godard,et al.  2.04 – Orogenic, Ophiolitic, and Abyssal Peridotites , 2003 .

[101]  A. Hofmann Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements , 2003 .

[102]  F. Stuart,et al.  High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes , 2003, Nature.

[103]  A. Hofmann,et al.  The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP‐2 drill core , 2003 .

[104]  M. Norman,et al.  Origins of compositional heterogeneity in olivine-hosted melt inclusions from the Baffin Island picrites , 2003 .

[105]  B. Hardarson,et al.  Does depleted mantle form an intrinsic part of the Iceland plume? , 2003 .

[106]  H. Samuel,et al.  Thermochemical convection and helium concentrations in mantle plumes , 2003 .

[107]  J. Baker,et al.  The Prinsen af Wales Bjerge Formation lavas, East Greenland: the transition from tholeiitic to alkalic magmatism during Palaeogene continental break-up , 2003 .

[108]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[109]  L. Larsen,et al.  Alkali Picrites Formed by Melting of Old Metasomatized Lithospheric Mantle: Manîtdlat Member, Vaigat Formation, Palaeocene of West Greenland , 2003 .

[110]  D. Graham Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs , 2002 .

[111]  D. Porcelli,et al.  The core as a possible source of mantle helium: Earth and Planetary Science Letters , 2001 .

[112]  J. Eiler Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks , 2001 .

[113]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[114]  L. Larsen,et al.  Processes in High-Mg, High-T Magmas: Evidence from Olivine, Chromite and Glass in Palaeogene Picrites from West Greenland , 2000 .

[115]  P. Tackley,et al.  Mantle convection and plate tectonics: toward an integrated physical and chemical theory , 2000, Science.

[116]  F. Stuart,et al.  Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province , 2000 .

[117]  K. Grönvold,et al.  Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes , 1999 .

[118]  M. Kurz,et al.  Dynamics of the Galapagos hotspot from helium isotope geochemistry , 1999 .

[119]  P. Hooper,et al.  XRF Analysis of Rocks and Minerals for Major and Trace Elements on a Single Low Dilution Li-tetraborate Fused Bead , 1999 .

[120]  J. Lupton,et al.  Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland , 1998 .

[121]  M. Storey,et al.  40Ar/39Ar geochronology of the West Greenland Tertiary volcanic province , 1998 .

[122]  A. Jephcoat Rare-gas solids in the Earth's deep interior , 1998, Nature.

[123]  B. Marty,et al.  Helium isotopes in early Tertiary basalts, northeast Greenland: Evidence for 58 Ma plume activity in the North Atlantic–Iceland volcanic province , 1998 .

[124]  M. Walter Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere , 1998 .

[125]  A. Kerr,et al.  The north Atlantic igneous province , 2013 .

[126]  B. Hardarson,et al.  Rift relocation — A geochemical and geochronological investigation of a palaeo-rift in northwest Iceland , 1997 .

[127]  T. Staudacher,et al.  Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii , 1997 .

[128]  W. Doherty,et al.  Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and Nuussuaq, West Greenland with implications for the mineral potential of comagmatic intrusions , 1997 .

[129]  F. Albarède,et al.  Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS , 1997 .

[130]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[131]  John F. Casey,et al.  Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis , 1996 .

[132]  B. Hanan,et al.  Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes , 1996, Science.

[133]  B V Sanford,et al.  Geological map of Canada , 1996 .

[134]  M. Kohn,et al.  UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .

[135]  W. McDonough,et al.  The composition of the Earth , 1995 .

[136]  D. Hilton,et al.  Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas , 1995, Nature.

[137]  D. Lowry,et al.  Oxygen isotope composition of mantle peridotite , 1994 .

[138]  R. Müller,et al.  Iceland hotspot track , 1994 .

[139]  J. Lupton,et al.  Mantle Plume Helium in Submarine Basalts from the Gal�pagos Platform , 1993, Science.

[140]  A. Pedersen,et al.  The Tertiary picrites of West Greenland: contributions from ‘Icelandic’ and other sources , 1993 .

[141]  D. Francis,et al.  The relationship between E- and N-type magmas in the Baffin Bay Lavas , 1992 .

[142]  J. H. Natland,et al.  Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas , 1992 .

[143]  S. Hart,et al.  Mantle Plumes and Entrainment: Isotopic Evidence , 1992, Science.

[144]  T. Köhler,et al.  Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications , 1990 .

[145]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[146]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[147]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[148]  M. Kurz Cosmogenic helium in a terrestrial igneous rock , 1986, Nature.

[149]  JOSEPH V. Smith,et al.  Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel , 1986, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[150]  D. Francis The Baffin Bay lavas and the value of picrites as analogues of primary magmas , 1985 .

[151]  L. Kristjánsson,et al.  Magnetostratigraphy and geochronology of northwest Iceland , 1984 .

[152]  D. Clague,et al.  Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii , 1983 .

[153]  A. Hofmann,et al.  Ba, Rb and Cs in the Earth's Mantle , 1983 .

[154]  M. Kurz,et al.  Helium isotopic systematics of oceanic islands and mantle heterogeneity , 1982, Nature.