Mathematical models for dispersive electromagnetic waves: An overview

Abstract In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive isotropic media. We emphasize the link between physical requirements and mathematical properties of the models. A particular attention is devoted to the notions of non-dissipativity and passivity. We consider successively the cases of so-called local media and then of general passive media. The models are studied through energy techniques, spectral theory and dispersion analysis of plane waves. For making the article self-contained, we provide in appendix some useful mathematical background.

[1]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[2]  Patrick Joly,et al.  Perfectly matched layers in negative index metamaterials and plasmas , 2015 .

[3]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[4]  Armen H. Zemanian,et al.  Realizability theory for continuous linear systems , 1972 .

[5]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[6]  O. Brune Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency , 1931 .

[7]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[8]  Horace Lamb,et al.  On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .

[9]  Brigitte Maier,et al.  Electrodynamics Of Continuous Media , 2016 .

[10]  A. Figotin,et al.  Spectral Theory of Time Dispersive and Dissipative Systems , 2004, math-ph/0404070.

[11]  Guy Bouchitté,et al.  Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..

[12]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[13]  M. Gustafsson,et al.  Sum rules and physical bounds on passive metamaterials , 2010 .

[14]  P. Joly,et al.  Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part I: Generalized Fourier transform , 2016, 1610.03021.

[15]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[16]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[17]  David R. Smith,et al.  Metamaterials: Theory, Design, and Applications , 2009 .

[18]  Patrick Joly,et al.  Stable perfectly matched layers for a cold plasma in a strong background magnetic field , 2017, J. Comput. Phys..

[19]  Tosio Kato Perturbation theory for linear operators , 1966 .

[20]  M. Gustafsson,et al.  Sum rules and constraints on passive systems , 2011 .

[21]  A. Figotin,et al.  Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems , 2006, math-ph/0608003.

[22]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[23]  Steven G. Johnson,et al.  Speed-of-light limitations in passive linear media , 2014, 1405.0238.

[24]  Viktor A. Podolskiy,et al.  A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance , 2005, Proceedings of the Royal Society A.

[25]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[26]  Jichun Li A literature survey of mathematical study of metamaterials , 2016 .

[27]  John B. Pendry,et al.  Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .

[28]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[29]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[30]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[31]  B. Gralak,et al.  Macroscopic Maxwell's equations and negative index materials , 2009, 0901.0187.

[32]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[33]  Graeme W. Milton,et al.  Finite frequency range kramers kronig relations: Bounds on the dispersion , 1997 .

[34]  Wei Yang,et al.  Developing a Time-Domain Finite Element Method for the Lorentz Metamaterial Model and Applications , 2016, J. Sci. Comput..

[35]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  G. Bouchitté,et al.  Homogenization of Maxwell’s equations with split rings , 2008 .

[37]  F. Gesztesy,et al.  Essential Closures and AC Spectra for Reflectionless CMV, Jacobi, and Schrödinger Operators Revisited , 2008, 0803.3178.

[38]  A Tip Linear dispersive dielectrics as limits of Drude-Lorentz systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Patrick Joly,et al.  On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials , 2017, Math. Comput..

[40]  Hamiltonian treatment of time dispersive and dissipative media within the linear response theory , 2004, physics/0410127.

[41]  Kenneth Falconer,et al.  GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .

[42]  Василий Васильевич Жиков,et al.  Об одном расширении и применении метода двухмасштабной сходимости@@@On an extension of the method of two-scale convergence and its applications , 2000 .

[43]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  G. Milton,et al.  Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking , 2016, 1610.08592.

[45]  M. Cassier Étude de deux problèmes de propagation d'ondes transitoires : 1) Focalisation spatio-temporelle en acoustique; 2) Transmission entre un diélectrique et un métamatériau. , 2014 .

[46]  P. I. Richards A special class of functions with positive real part in a half-plane , 1947 .

[47]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[48]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[49]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[50]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[51]  Yunqing Huang,et al.  Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials , 2012 .

[52]  Guy Bouchitté,et al.  Homogenization of the 3D Maxwell system near resonances and artificial magnetism , 2009 .

[53]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .