Mathematical models for dispersive electromagnetic waves: An overview
暂无分享,去创建一个
[1] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[2] Patrick Joly,et al. Perfectly matched layers in negative index metamaterials and plasmas , 2015 .
[3] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[4] Armen H. Zemanian,et al. Realizability theory for continuous linear systems , 1972 .
[5] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[6] O. Brune. Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency , 1931 .
[7] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .
[8] Horace Lamb,et al. On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .
[9] Brigitte Maier,et al. Electrodynamics Of Continuous Media , 2016 .
[10] A. Figotin,et al. Spectral Theory of Time Dispersive and Dissipative Systems , 2004, math-ph/0404070.
[11] Guy Bouchitté,et al. Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..
[12] V. Veselago. The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .
[13] M. Gustafsson,et al. Sum rules and physical bounds on passive metamaterials , 2010 .
[14] P. Joly,et al. Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part I: Generalized Fourier transform , 2016, 1610.03021.
[15] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[16] F. Gesztesy,et al. On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.
[17] David R. Smith,et al. Metamaterials: Theory, Design, and Applications , 2009 .
[18] Patrick Joly,et al. Stable perfectly matched layers for a cold plasma in a strong background magnetic field , 2017, J. Comput. Phys..
[19] Tosio Kato. Perturbation theory for linear operators , 1966 .
[20] M. Gustafsson,et al. Sum rules and constraints on passive systems , 2011 .
[21] A. Figotin,et al. Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems , 2006, math-ph/0608003.
[22] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[23] Steven G. Johnson,et al. Speed-of-light limitations in passive linear media , 2014, 1405.0238.
[24] Viktor A. Podolskiy,et al. A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance , 2005, Proceedings of the Royal Society A.
[25] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[26] Jichun Li. A literature survey of mathematical study of metamaterials , 2016 .
[27] John B. Pendry,et al. Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .
[28] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[29] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[30] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[31] B. Gralak,et al. Macroscopic Maxwell's equations and negative index materials , 2009, 0901.0187.
[32] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[33] Graeme W. Milton,et al. Finite frequency range kramers kronig relations: Bounds on the dispersion , 1997 .
[34] Wei Yang,et al. Developing a Time-Domain Finite Element Method for the Lorentz Metamaterial Model and Applications , 2016, J. Sci. Comput..
[35] G. Milton,et al. On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[36] G. Bouchitté,et al. Homogenization of Maxwell’s equations with split rings , 2008 .
[37] F. Gesztesy,et al. Essential Closures and AC Spectra for Reflectionless CMV, Jacobi, and Schrödinger Operators Revisited , 2008, 0803.3178.
[38] A Tip. Linear dispersive dielectrics as limits of Drude-Lorentz systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[39] Patrick Joly,et al. On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials , 2017, Math. Comput..
[40] Hamiltonian treatment of time dispersive and dissipative media within the linear response theory , 2004, physics/0410127.
[41] Kenneth Falconer,et al. GEOMETRY OF SETS AND MEASURES IN EUCLIDEAN SPACES FRACTALS AND RECTIFIABILITY , 1996 .
[42] Василий Васильевич Жиков,et al. Об одном расширении и применении метода двухмасштабной сходимости@@@On an extension of the method of two-scale convergence and its applications , 2000 .
[43] R. Ziolkowski,et al. Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[44] G. Milton,et al. Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking , 2016, 1610.08592.
[45] M. Cassier. Étude de deux problèmes de propagation d'ondes transitoires : 1) Focalisation spatio-temporelle en acoustique; 2) Transmission entre un diélectrique et un métamatériau. , 2014 .
[46] P. I. Richards. A special class of functions with positive real part in a half-plane , 1947 .
[47] S. Cummer,et al. One path to acoustic cloaking , 2007 .
[48] David R. Smith,et al. Metamaterials and Negative Refractive Index , 2004, Science.
[49] H. Kreiss,et al. Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .
[50] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[51] Yunqing Huang,et al. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials , 2012 .
[52] Guy Bouchitté,et al. Homogenization of the 3D Maxwell system near resonances and artificial magnetism , 2009 .
[53] W. Donoghue. Monotone Matrix Functions and Analytic Continuation , 1974 .