An Exploration of Classification prediction techniques in data mining: the insurance domain

[1]  Namsik Chang,et al.  Dynamics of Modeling in Data Mining: Interpretive Approach to Bankruptcy Prediction , 1999, J. Manag. Inf. Syst..

[2]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[3]  Alfredo Vellido,et al.  Neural networks in business: a survey of applications (1992–1998) , 1999 .

[4]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[5]  Herna L. Viktor,et al.  Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach , 2004, SKDD.

[6]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[7]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[8]  Paul Gray,et al.  Introduction to Data Mining and Knowledge Discovery , 1998, Proceedings of the Thirty-First Hawaii International Conference on System Sciences.

[9]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[10]  Qiang Ding,et al.  Decision tree classification of spatial data streams using Peano Count Trees , 2002, SAC '02.

[11]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[12]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[13]  Júlio C. Nievola,et al.  Attribute selection methods comparison for classification of diffuse large B-cell lymphoma , 2005, Fourth International Conference on Machine Learning and Applications (ICMLA'05).

[14]  P. H. Sönksen,et al.  Data mining for indicators of early mortality in a database of clinical records , 2001, Artif. Intell. Medicine.

[15]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[16]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[17]  Jugal K. Kalita,et al.  Efficient handling of high-dimensional feature spaces by randomized classifier ensembles , 2002, KDD.

[18]  Julia S. J. Yeo,et al.  How Neural Networks Can Help Loan Officers to Make Better Informed Application Decisions , 2003 .

[19]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[20]  David G. Stork,et al.  Pattern Classification , 1973 .

[21]  Xingquan Zhu,et al.  Class Noise vs. Attribute Noise: A Quantitative Study , 2003, Artificial Intelligence Review.

[22]  Leonard E. Trigg,et al.  Technical Note: Naive Bayes for Regression , 2000, Machine Learning.

[23]  Stan Matwin,et al.  Addressing the Curse of Imbalanced Training Sets: One-Sided Selection , 1997, ICML.

[24]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[25]  Ingo Mierswa Automatic Feature Extraction from Large Time Series , 2004, LWA.

[26]  Damminda Alahakoon,et al.  Minority report in fraud detection: classification of skewed data , 2004, SKDD.

[27]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[28]  M. Maloof Learning When Data Sets are Imbalanced and When Costs are Unequal and Unknown , 2003 .

[29]  Fumiyo Fukumoto Toward Optimal Feature Selection for Word Sense Disambiguation , 2001 .

[30]  Limsoon Wong,et al.  DATA MINING TECHNIQUES , 2003 .

[31]  Marley M. B. R. Vellasco,et al.  Data Mining Techniques on the Evaluation of Wireless Churn , 2004, ESANN.

[32]  Stephen T. C. Wong,et al.  Cancer classification and prediction using logistic regression with Bayesian gene selection , 2004, J. Biomed. Informatics.

[33]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[34]  Thomas S. Gruca,et al.  Mining sales data using a neural network model of market response , 1999, SKDD.

[35]  Maarten van Someren,et al.  A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000 , 2004, Machine Learning.

[36]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[37]  Rich Caruana,et al.  Data mining in metric space: an empirical analysis of supervised learning performance criteria , 2004, ROCAI.

[38]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[39]  Jiawei Han,et al.  The third SIGKDD workshop on mining temporal and sequential data (KDD/TDM 2004) , 2004, SKDD.

[40]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[41]  Abraham Kandel,et al.  The data mining approach to automated software testing , 2003, KDD '03.

[42]  Le Gruenwald,et al.  A survey of data mining and knowledge discovery software tools , 1999, SKDD.

[43]  Charles Elkan,et al.  Magical thinking in data mining: lessons from CoIL challenge 2000 , 2001, KDD '01.

[44]  Foster Provost,et al.  The effect of class distribution on classifier learning , 2001 .

[45]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[46]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[47]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[48]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[49]  Nitesh V. Chawla,et al.  Editorial: special issue on learning from imbalanced data sets , 2004, SKDD.

[50]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[51]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[52]  Tom Fawcett,et al.  Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions , 1997, KDD.

[53]  Weizhong Yan,et al.  Classifier performance measures in multifault diagnosis for aircraft engines , 2002, SPIE Defense + Commercial Sensing.

[54]  Filippo Menczer,et al.  Feature selection in data mining , 2003 .

[55]  Heikki Mannila,et al.  Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining , 1997 .

[56]  Jeffrey S. Simonoff,et al.  Tree Induction Vs Logistic Regression: A Learning Curve Analysis , 2001, J. Mach. Learn. Res..

[57]  Hisham M. Haddad,et al.  Proceedings of the 2002 ACM Symposium on Applied Computing (SAC), March 10-14, 2002, Madrid, Spain , 2002, SAC.

[58]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[59]  Tom M. Mitchell,et al.  Machine learning, International Edition , 1997, McGraw-Hill Series in Computer Science.

[60]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[61]  David D. Denison,et al.  Nonlinear estimation and classification , 2003 .

[62]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[63]  Huiqing Liu,et al.  A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. , 2002, Genome informatics. International Conference on Genome Informatics.