Improvements in the Explicit Estimation of Pollutant Dispersion Coefficient in Rivers by Subset Selection of Maximum Dissimilarity Hybridized With ANFIS-Firefly Algorithm (FFA)

In this paper, a new hybrid model is proposed using Subset Selection by Maximum Dissimilarity (SSMD) and adaptive neuro-fuzzy inference system (ANFIS) hybridized with the firefly algorithm (FFA) to predict the longitudinal dispersion coefficient (<inline-formula> <tex-math notation="LaTeX">$K_{x}$ </tex-math></inline-formula>). The proposed framework (ANFIS-FFA), combines the specific structures and strengths of both ANFIS and FFA approaches. The FFA is used to derive the optimum ANFIS parameters. The <inline-formula> <tex-math notation="LaTeX">$K_{x}$ </tex-math></inline-formula> data set includes 503 cross-sectional data point from small to large rivers. For pre-processing of the data set, the SSMD method is used, which is superior to the classical trial and error method. The database covers a wide range of river width (0.2- 867m), and depths (0.034- 19.9 m). Fifteen different combinations of river width (B), depth (H), flow velocity (U) and shear velocity (<inline-formula> <tex-math notation="LaTeX">$\text{U}_{\ast }$ </tex-math></inline-formula>) are implemented as inputs to create fifteen estimative models. The output of the ANFIS-FFA model is compared with the ANFIS and previously published equations to check the performance of the proposed model. The results show that the highest accuracy is attained by the M1 model, with all geometric and hydrodynamic parameters as input variables in comparison with ANFIS and previous equations. The <inline-formula> <tex-math notation="LaTeX">$\text{R}^{2}$ </tex-math></inline-formula> value, RMSE, MAE and NSE for ANFIS-FFA model are 0.67, 113.14 <inline-formula> <tex-math notation="LaTeX">$\text{m}^{2}$ </tex-math></inline-formula>/s, 48 <inline-formula> <tex-math notation="LaTeX">$\text{m}^{2}$ </tex-math></inline-formula>/s, and 0.63 for proposed dimensional model, and 0.35, 874.5, 520.8, and 0.1 in non-dimensional ANFIS-FFA model, respectively. These values were 0.37, 463.34 <inline-formula> <tex-math notation="LaTeX">$\text{m}^{2}$ </tex-math></inline-formula>/s, 85.69 <inline-formula> <tex-math notation="LaTeX">$\text{m}^{2}$ </tex-math></inline-formula>/s, and −5.19 for dimensional ANFIS model, and 0.11, 3269.88, 1932.09 and −11.54 for non-dimensional ANFIS model, respectively. Overall, hybridization caused 81%, 75%, 76% improvement in <inline-formula> <tex-math notation="LaTeX">$\text{R}^{2}$ </tex-math></inline-formula>, RMSE and MAE. In another contribution of the paper, by using the matrix form of developed ANFIS-FFA optimized parameters, a novel explicit calculation procedure for estimation of <inline-formula> <tex-math notation="LaTeX">$K_{x}$ </tex-math></inline-formula> is derived. Based on the results, the proposed ANFIS-FFA model exhibits significant improvements than the classical ANFIS and highlights that optimizing by nature-inspired optimization algorithms plays a critical role in strengthening the ANFIS estimations generality.

[1]  Markus König,et al.  Assessment and weighting of meteorological ensemble forecast members based on supervised machine learning with application to runoff simulations and flood warning , 2017, Adv. Eng. Informatics.

[2]  Wenxin Huai,et al.  Physically sound formula for longitudinal dispersion coefficients of natural rivers , 2017 .

[3]  Hikmet Kerem Cigizoglu,et al.  Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods , 2008 .

[4]  H. Md. Azamathulla,et al.  Support vector machine approach for longitudinal dispersion coefficients in natural streams , 2011, Appl. Soft Comput..

[5]  Roslan Hashim,et al.  New Approach to Estimate Velocity at Limit of Deposition in Storm Sewers Using Vector Machine Coupled with Firefly Algorithm , 2017 .

[6]  Majid Mahmoodabadi,et al.  Long-term evaluation of water quality parameters of the Karoun River using a regression approach and the adaptive neuro-fuzzy inference system. , 2018, Marine pollution bulletin.

[7]  Ebrahim Jabbari,et al.  Estimation of Transverse Mixing Coefficient in Straight and Meandering Streams , 2017, Water Resources Management.

[8]  Aboul Ella Hassanien,et al.  Firefly Optimization Algorithm for Feature Selection , 2015, BCI.

[9]  George V. Sabol,et al.  Empirical data on longitudinal dispersion in rivers , 1974 .

[10]  Vahid Nourani,et al.  Artificial intelligence based ensemble model for prediction of vehicular traffic noise. , 2019, Environmental research.

[11]  Mohammad Mehdi Ebadzadeh,et al.  An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS , 2009, Expert Syst. Appl..

[12]  Ronny Berndtsson,et al.  Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers , 2018, Journal of Water Supply: Research and Technology - Aqua.

[13]  Antonis D. Koussis,et al.  HYDRAULIC ESTIMATION OF DISPERSION COEFFICIENT FOR STREAMS , 1998 .

[14]  Bulent Tutmez,et al.  Regression Kriging Analysis for Longitudinal Dispersion Coefficient , 2013, Water Resources Management.

[15]  Z. Ahmad,et al.  Mixing Length for Establishment of Longitudinal Dispersion in Streams , 2009 .

[16]  H. Fischer,et al.  Longitudinal dispersion in laboratory and natural streams , 1966 .

[17]  Zaher Mundher Yaseen,et al.  Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model , 2017 .

[18]  Bahram Gharabaghi,et al.  Gene expression models for prediction of longitudinal dispersion coefficient in streams , 2015 .

[19]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[20]  Robert J. Abrahart,et al.  HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts , 2007, Environ. Model. Softw..

[21]  Isabel Margarida Horta Ribeiro Antunes,et al.  Predictive scenarios for surface water quality simulation - A watershed case study , 2018, CATENA.

[22]  R. W. James,et al.  Time of travel and dispersion in the Jones Falls, Baltimore, Maryland , 1984 .

[23]  Z. Fuat Toprak,et al.  Longitudinal Dispersion Coefficient Modeling in Natural Channels using Fuzzy Logic , 2007 .

[24]  Shaoqiang Ni,et al.  A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation , 2017, Ecological Indicators.

[25]  Ian Guymer,et al.  Transverse and longitudinal mixing in real emergent vegetation at low velocities , 2017 .

[26]  Jan Adamowski,et al.  Estimation of the Dispersion Coefficient in Natural Rivers Using a Granular Computing Model , 2017 .

[27]  Mohammad Ali Ghorbani,et al.  Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point , 2017 .

[28]  Il Won Seo,et al.  Predicting Longitudinal Dispersion Coefficient in Natural Streams , 1998 .

[29]  Hossien Riahi-Madvar,et al.  Pareto Optimal Multigene Genetic Programming for Prediction of Longitudinal Dispersion Coefficient , 2019, Water Resources Management.

[30]  Ahmed El-Shafie,et al.  Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region , 2018, Theoretical and Applied Climatology.

[31]  Mahmud Güngör,et al.  Hydrological time‐series modelling using an adaptive neuro‐fuzzy inference system , 2008 .

[32]  Vijay P. Singh,et al.  Predicting Longitudinal Dispersion Coefficient in Natural Streams by Artificial Neural Network , 2005 .

[33]  Shahaboddin Shamshirband,et al.  Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System , 2019, Energies.

[34]  Ani Shabri,et al.  A hybrid wavelet analysis and adaptive neuro-fuzzy inference system for drought forecasting , 2014 .

[35]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[36]  Hugo B. Fischer,et al.  Discussion of Simple Method for Predicting Dispersion in Streams by Raul S. McQuivey and Thomas N. Keefer , 1975 .

[37]  Hossein Bonakdari,et al.  A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed , 2018, Neural Computing and Applications.

[38]  J. W. Elder The dispersion of marked fluid in turbulent shear flow , 1959, Journal of Fluid Mechanics.

[39]  Henry Liu Predicting Dispersion Coefficient of Streams , 1977 .

[40]  Mohammad Najafzadeh,et al.  Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers , 2016, Environmental Earth Sciences.

[41]  Hazi Mohammad Azamathulla,et al.  Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams , 2011 .

[42]  Xudong Fu,et al.  Performance of the analytical solutions for Taylor dispersion process in open channel flow , 2015 .

[43]  I. Papadimitrakis,et al.  Longitudinal Dispersion Characteristics of Rivers and Natural Streams in Greece , 2004 .

[44]  A. Seifi,et al.  Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS , 2018, Arabian Journal of Geosciences.

[45]  Hossein Bonakdari,et al.  A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes. , 2016, Water science and technology : a journal of the International Association on Water Pollution Research.

[46]  P Willett,et al.  Comparison of algorithms for dissimilarity-based compound selection. , 1997, Journal of molecular graphics & modelling.

[47]  Wenxin Huai,et al.  Estimating the Longitudinal Dispersion Coefficient in Straight Natural Rivers , 2016 .

[48]  Hossien Riahi-Madvar,et al.  A novel equation for longitudinal dispersion coefficient prediction based on the hybrid of SSMD and whale optimization algorithm. , 2020, The Science of the total environment.

[49]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  Minghao Yin,et al.  Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams , 2013, Water Resources Management.

[51]  P. C. Nayak,et al.  Fuzzy computing based rainfall–runoff model for real time flood forecasting , 2005 .

[52]  Zhongyi Hu,et al.  Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting , 2014, Knowl. Based Syst..

[53]  Oscar H. IBARm Information and Control , 1957, Nature.

[54]  Hamid Mehdizadeh,et al.  A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network , 2011 .

[55]  Miguel A. Mariño,et al.  A self-tuning ANN model for simulation and forecasting of surface flows , 2016, Water Resources Management.

[56]  Geoffrey Ingram Taylor,et al.  The dispersion of matter in turbulent flow through a pipe , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  Mahmood Javan,et al.  Sudden pollutant discharge in vegetated compound meandering rivers , 2019, CATENA.

[58]  Majid Dehghani,et al.  Predicting the Longitudinal Dispersion Coefficient Using Support Vector Machine and Adaptive Neuro-Fuzzy Inference System Techniques , 2009 .

[59]  T. Day,et al.  Longitudinal dispersion in natural channels , 1975 .

[60]  Zhiqiang Deng,et al.  How Reliable Are ANN, ANFIS, and SVM Techniques for Predicting Longitudinal Dispersion Coefficient in Natural Rivers? , 2016 .

[61]  Slawomir Zak,et al.  Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.

[62]  Ian A. Watson,et al.  Dissimilarity-based approaches to compound acquisition. , 2008, Current opinion in chemical biology.

[63]  Mohamad Javad Alizadeh,et al.  Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient , 2017, Water Resources Management.

[64]  Meredith L. Carr,et al.  Measuring the Dispersion Coefficient with Acoustic Doppler Current Profilers , 2007 .

[65]  Il Won Seo,et al.  Estimation of the Longitudinal Dispersion Coefficient using the Velocity Profile in Natural Streams , 2004 .

[66]  R. Noori,et al.  Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte‐Carlo simulation , 2014 .

[67]  Hugo B. Fischer,et al.  The Mechanics of Dispersion in Natural Streams , 1967 .

[68]  Roger A Falconer,et al.  Longitudinal dispersion coefficients in natural channels. , 2002, Water research.

[69]  Huei-Tau Ouyang Input optimization of ANFIS typhoon inundation forecast models using a Multi-Objective Genetic Algorithm , 2018 .

[70]  A. Fick On liquid diffusion , 1995 .

[71]  Milena Horvat,et al.  High-resolution pollutant dispersion modelling in contaminated coastal sites. , 2013, Environmental research.

[72]  Umberto Rizza,et al.  Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace Transform techniques , 2009, Environ. Model. Softw..

[73]  Haidar Samet,et al.  A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting , 2014, Expert Syst. Appl..

[74]  Vijay P. Singh,et al.  Longitudinal dispersion coefficient in straight rivers , 2001 .

[75]  M. Razack,et al.  Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy , 2010 .

[76]  O. Kisi,et al.  SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment , 2012 .

[77]  William J. Welch,et al.  Computer-aided design of experiments , 1981 .

[78]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[79]  Fi-John Chang,et al.  Adaptive neuro-fuzzy inference system for prediction of water level in reservoir , 2006 .

[80]  Paula Camus,et al.  Analysis of clustering and selection algorithms for the study of multivariate wave climate , 2011 .

[81]  E. Meiburg,et al.  Sediment-laden fresh water above salt water: linear stability analysis , 2011, Journal of Fluid Mechanics.

[82]  Akram Seifi,et al.  Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran , 2018, Journal of Water and Climate Change.

[83]  Thomas N. Keefer,et al.  Simple Method for Predicting Dispersion in Streams , 1974 .

[84]  Babak Omidvar,et al.  Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic , 2010, Expert Syst. Appl..

[85]  D. A. Barry,et al.  Prolonged river water pollution due to variable‐density flow and solute transport in the riverbed , 2015 .