Chiral topological superfluids in the attractive Haldane-Hubbard model with opposite Zeeman energy at two sublattice sites

Abstract Ultracold atoms in an optical lattice provide a platform for the realization of the topological superfluid. Motivated by the recent cold atom realization of the topological Haldane model [G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, Th. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014)], in this paper we propose an alternative way to realize chiral topological superfluids with Chern number 𝒞 = 1 and 2 by considering attractive Haldane-Hubbard model with the site-dependent Zeeman field. The topological superfluids support the robust chiral edge modes, and the one-half of flux quantum-π flux in 𝒞 = 1 topological superfluid traps a pair of Majorana zero modes different from the case in the spinless px ± ipy topological superfluid due to the extra freedom of A-B sublattices. In addition, we discuss the superfluid stability and calculate Kosterlitz-Thouless transition temperature by random-phase-approximation approach.

[1]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[2]  K. T. Law,et al.  Erratum: Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms [Phys. Rev. Lett. 112, 086401 (2014)] , 2014 .

[3]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[4]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[5]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[6]  I. Spielman Detection of topological matter with quantum gases , 2013 .

[7]  Thorsten Koehler,et al.  Production of cold molecules via magnetically tunable Feshbach resonances , 2006, cond-mat/0601420.

[8]  M. Freedman,et al.  Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.

[9]  S. Tewari,et al.  Index theorem for the zero modes of Majorana fermion vortices in chiral p-wave superconductors. , 2006, Physical review letters.

[10]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[11]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[12]  Iacopo Carusotto,et al.  Spin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices. , 2004, Physical review letters.

[13]  Z. Wang,et al.  Realizing and detecting the quantum Hall effect without landau levels by using ultracold atoms. , 2008, Physical review letters.

[14]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[15]  S. Kou,et al.  Chiral spin liquid in a correlated topological insulator , 2010, 1012.0620.

[16]  K. T. Law,et al.  Realization of 2D Spin-Orbit Interaction and Exotic Topological Orders in Cold Atoms , 2013, 1304.0291.

[17]  Chuanwei Zhang,et al.  px+ipy superfluid from s-wave interactions of fermionic cold atoms. , 2008, Physical review letters.

[18]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[19]  C. M. Smith,et al.  Spin-charge-density wave in a rounded-square Fermi surface for ultracold atoms , 2010, 1007.0782.

[20]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[21]  Peng Zhang,et al.  Production of Feshbach molecules induced by spin–orbit coupling in Fermi gases , 2013, Nature Physics.

[22]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[23]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[24]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[25]  N. Goldman,et al.  Detecting chiral edge states in the Hofstadter optical lattice. , 2012, Physical review letters.

[26]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[27]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[28]  M. Iskin,et al.  BCS-BEC crossover of collective excitations in two-band superfluids , 2004, cond-mat/0408586.

[29]  S. Fujimoto,et al.  Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. , 2009, Physical review letters.

[30]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[31]  Xiao-Liang Qi,et al.  Chiral topological superconductor from the quantum Hall state , 2010, 1003.5448.

[32]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[33]  M. Lewenstein,et al.  Direct imaging of topological edge states in cold-atom systems , 2012, Proceedings of the National Academy of Sciences.

[34]  BCS-BEC crossover on the two-dimensional honeycomb lattice. , 2006, Physical review letters.