Stable look-ahead versions of the Euclidean and Chebyshev algorithms

We first review the basic relations between the regular formal orthogonal polynomials (FOPs) for a sequence of moments (Markov parameters), the nonsingular leading principal submatrices of the moment matrix M (which is an infinite Hankel matrix), the distinct entries on the main diagonal of the Pade table for the symbol of M (which is the generating function or z-transform of the moments), the corresponding continued fraction (which is a J-fraction or a P-fraction), and the Euclidean algorithm for power series in ζ-1, which in the generic case is seen to reduce to the Chebyshev algorithm. The underlying recurrences are a special case of the general recurrences that are the basis of the Cabay-Meleshko algorithm which, in contrast to the aforementioned tools, is (weakly) stable. While, in the Toeplitz solver terminology, the Cabay-Meleshko algorithm is of Levinson type, we also outline the corresponding O(N 2) Schur-type algorithm and a related O(N log2 N) algorithm. Finally, we sketch three look-ahead strategies of which two are applicable to the O(N log2 N) algorithm also.

[1]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[2]  M. Gutknecht The multipoint Padé table and general recurrences for rational interpolation , 1993 .

[3]  William F. Trench,et al.  An Algorithm for the Inversion of Finite Hankel Matrices , 1965 .

[4]  H. Zha,et al.  A look-ahead algorithm for the solution of general Hankel systems , 1993 .

[5]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[6]  Claude Brezinski,et al.  History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.

[7]  M. Gutknecht,et al.  The stability of inversion formulas for Toeplitz matrices , 1995 .

[8]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[9]  S. Cabay,et al.  A Weakly Stable Algorithm for Padé Approximants and the Inversion of Hankel Matrices , 1993, SIAM J. Matrix Anal. Appl..

[10]  M. Barel,et al.  The look-ahead philosophy applied to matrix rational interpolation problems , 1994 .

[11]  Martin H. Gutknecht,et al.  Stable row recurrences for the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems , 1993 .

[12]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[13]  W. Gragg,et al.  The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis , 1972 .

[14]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[15]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[16]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[17]  Alston S. Householder,et al.  Bigradients and the Problem of Routh and Hurwitz , 1968 .

[18]  B. Dickinson,et al.  A minimal realization algorithm for matrix sequences , 1973, CDC 1973.

[19]  Alston S. Householder,et al.  Bezoutiants, Elimination and Localization , 1970 .

[20]  Adhemar Bultheel,et al.  Pade´ techniques for model reduction in linear system theory: a survey , 1986 .

[21]  A. Antoulas On recursiveness and related topics in linear systems , 1986 .

[22]  Biswa Nath Datta,et al.  On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .

[23]  G. Golub,et al.  Modified moments for indefinite weight functions , 1990 .

[24]  A. Draux Polynômes orthogonaux formels : applications , 1983 .

[25]  M. Gutknecht,et al.  LOOK-AHEAD LEVINSON- AND SCHUR-TYPE RECURRENCES IN THE PAD ET ABLE , 1994 .

[26]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[27]  Adhemar Bultheel,et al.  A canonical matrix continued fraction solution of the minimal (partial) realization problem , 1989 .

[28]  Adhemar Bultheel,et al.  Recursive algorithms for the matrix Padé problem , 1980 .

[29]  Montessus de Ballore,et al.  Sur les fractions continues algébriques , 1902 .

[30]  F. Gustavson,et al.  On fast computation of superdiagonal Padé fractions , 1982 .

[31]  M. Barel,et al.  Euclid, Padé and Lanczos, another golden braid , 1993 .

[32]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[33]  T. Stieltjes,et al.  Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .

[34]  Marlis Hochbruck,et al.  Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .

[35]  George Labahn,et al.  On the theory and computation of nonperfect Pade´-Hermite approximants , 1992 .

[36]  Keith O. Geddes Symbolic Computation of Padé Approximants , 1979, TOMS.

[37]  Arne Magnus,et al.  Expansion of power series intoP-fractions , 1962 .

[38]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[39]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[40]  George W. Struble Orthogonal polynomials: Variable-signed weight functions , 1963 .

[41]  Mohamed Mkaouar Sfax Sur les fractions continues des séries formelles quadratiques sur , .

[42]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[43]  W. Gragg Matrix interpretations and applications of the continued fraction algorithm , 1974 .

[44]  Arne Magnus,et al.  Certain continued fractions associated with the Padé table , 1962 .

[45]  W. Gragg,et al.  On the partial realization problem , 1983 .

[46]  Martin H. Gutknecht,et al.  Continued fractions associated with the Newton-Padé table , 1989 .

[47]  P. Fuhrmann A matrix Euclidean algorithm and matrix continued fraction expansions , 1983 .

[48]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[49]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .

[50]  M. Barel,et al.  A Matrix Euclidean Algorithm for minimal partial realization , 1989 .

[51]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[52]  Martin H. Gutknecht,et al.  A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..

[53]  James B. Shearer,et al.  A Property of Euclid’s Algorithm and an Application to Padé Approximation , 1978 .