Stable look-ahead versions of the Euclidean and Chebyshev algorithms
暂无分享,去创建一个
[1] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[2] M. Gutknecht. The multipoint Padé table and general recurrences for rational interpolation , 1993 .
[3] William F. Trench,et al. An Algorithm for the Inversion of Finite Hankel Matrices , 1965 .
[4] H. Zha,et al. A look-ahead algorithm for the solution of general Hankel systems , 1993 .
[5] B. Anderson,et al. Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .
[6] Claude Brezinski,et al. History of continued fractions and Pade approximants , 1990, Springer series in computational mathematics.
[7] M. Gutknecht,et al. The stability of inversion formulas for Toeplitz matrices , 1995 .
[8] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[9] S. Cabay,et al. A Weakly Stable Algorithm for Padé Approximants and the Inversion of Hankel Matrices , 1993, SIAM J. Matrix Anal. Appl..
[10] M. Barel,et al. The look-ahead philosophy applied to matrix rational interpolation problems , 1994 .
[11] Martin H. Gutknecht,et al. Stable row recurrences for the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems , 1993 .
[12] M. Morf,et al. Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.
[13] W. Gragg,et al. The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis , 1972 .
[14] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[15] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[16] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[17] Alston S. Householder,et al. Bigradients and the Problem of Routh and Hurwitz , 1968 .
[18] B. Dickinson,et al. A minimal realization algorithm for matrix sequences , 1973, CDC 1973.
[19] Alston S. Householder,et al. Bezoutiants, Elimination and Localization , 1970 .
[20] Adhemar Bultheel,et al. Pade´ techniques for model reduction in linear system theory: a survey , 1986 .
[21] A. Antoulas. On recursiveness and related topics in linear systems , 1986 .
[22] Biswa Nath Datta,et al. On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .
[23] G. Golub,et al. Modified moments for indefinite weight functions , 1990 .
[24] A. Draux. Polynômes orthogonaux formels : applications , 1983 .
[25] M. Gutknecht,et al. LOOK-AHEAD LEVINSON- AND SCHUR-TYPE RECURRENCES IN THE PAD ET ABLE , 1994 .
[26] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[27] Adhemar Bultheel,et al. A canonical matrix continued fraction solution of the minimal (partial) realization problem , 1989 .
[28] Adhemar Bultheel,et al. Recursive algorithms for the matrix Padé problem , 1980 .
[29] Montessus de Ballore,et al. Sur les fractions continues algébriques , 1902 .
[30] F. Gustavson,et al. On fast computation of superdiagonal Padé fractions , 1982 .
[31] M. Barel,et al. Euclid, Padé and Lanczos, another golden braid , 1993 .
[32] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[33] T. Stieltjes,et al. Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .
[34] Marlis Hochbruck,et al. Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .
[35] George Labahn,et al. On the theory and computation of nonperfect Pade´-Hermite approximants , 1992 .
[36] Keith O. Geddes. Symbolic Computation of Padé Approximants , 1979, TOMS.
[37] Arne Magnus,et al. Expansion of power series intoP-fractions , 1962 .
[38] Martin Morf,et al. Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.
[39] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[40] George W. Struble. Orthogonal polynomials: Variable-signed weight functions , 1963 .
[41] Mohamed Mkaouar Sfax. Sur les fractions continues des séries formelles quadratiques sur , .
[42] Georg Heinig,et al. Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .
[43] W. Gragg. Matrix interpretations and applications of the continued fraction algorithm , 1974 .
[44] Arne Magnus,et al. Certain continued fractions associated with the Padé table , 1962 .
[45] W. Gragg,et al. On the partial realization problem , 1983 .
[46] Martin H. Gutknecht,et al. Continued fractions associated with the Newton-Padé table , 1989 .
[47] P. Fuhrmann. A matrix Euclidean algorithm and matrix continued fraction expansions , 1983 .
[48] W. J. Thron,et al. Continued Fractions: Analytic Theory and Applications , 1984 .
[49] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[50] M. Barel,et al. A Matrix Euclidean Algorithm for minimal partial realization , 1989 .
[51] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[52] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[53] James B. Shearer,et al. A Property of Euclid’s Algorithm and an Application to Padé Approximation , 1978 .