Unstructured spline spaces for isogeometric analysis based on spline manifolds

Based on Grimm and Hughes (1995) we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure which allows for the definition of function spaces such as, for instance, B-splines over multi-patch domains with extraordinary points or analysis-suitable unstructured T-splines. Within this framework, we generalize the concept of dual-compatible B-splines (developed for structured T-splines in Beirao da Veiga et al. (2013)). This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for h-refined meshes. We introduce a mathematical framework for unstructured B-spline spaces based on manifolds.We generalize the notion of dual-compatibility to manifold domains.We study the linear independence of unstructured B-splines on manifold domains.This allows us to prove optimal approximation properties for h-refined meshes.

[1]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[2]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[3]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[4]  Giancarlo Sangalli,et al.  Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..

[5]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[6]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[7]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[8]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[9]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[10]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[11]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[12]  Luiz Velho,et al.  A new construction of smooth surfaces from triangle meshes using parametric pseudo-manifolds , 2009, Comput. Graph..

[13]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[14]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[15]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[16]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[17]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[18]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[19]  T. Lyche,et al.  Some examples of quasi-interpolants constructed from local spline projectors , 2001 .

[20]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[23]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[24]  Bert Jüttler,et al.  Isogeometric segmentation. Part II: On the segmentability of contractible solids with non-convex edges , 2014, Graph. Model..

[25]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[26]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[27]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[28]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[29]  Giancarlo Sangalli,et al.  Analysis-suitable $G^1$ multi-patch parametrizations for $C^1$ isogeometric spaces , 2015, 1509.07619.

[30]  Mario Kapl,et al.  Isogeometric segmentation: The case of contractible solids without non-convex edges , 2014, Comput. Aided Des..

[31]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[32]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[33]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[34]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[35]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..

[36]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[37]  Bert Jüttler,et al.  Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..

[38]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[39]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[40]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[41]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[42]  Angelos Mantzaflaris,et al.  On Isogeometric Subdivision Methods for PDEs on Surfaces , 2015, 1503.03730.

[43]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[44]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[45]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .