On toric degenerations of flag varieties

Following the historical track in pursuing TT-equivariant flat toric degenerations of flag varieties and spherical varieties, we explain how powerful tools in algebraic geometry and representation theory, such as canonical bases, Newton–Okounkov bodies, PBW-filtrations and cluster algebras come to push the subject forward.

[1]  Martina Lanini,et al.  Degenerate flag varieties of type A and C are Schubert varieties , 2014, 1403.2889.

[2]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[3]  Ghislain Fourier,et al.  Essential bases and toric degenerations arising from birational sequences , 2015, 1510.02295.

[4]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[5]  M. Finkelberg,et al.  Degenerate affine Grassmannians and loop quivers , 2014, 1410.0777.

[6]  C. S. Seshadri Introduction to the Theory of Standard Monomials , 2007 .

[7]  Jiarui Fei,et al.  Tensor Product Multiplicities via Upper Cluster Algebras , 2016, Annales scientifiques de l'École Normale Supérieure.

[8]  V. Kiritchenko,et al.  NEWTON–OKOUNKOV POLYTOPES OF FLAG VARIETIES , 2015, 1506.00362.

[9]  Victor Lozovanu,et al.  Infinitesimal Newton-Okounkov bodies and jet separation , 2015, 1507.04339.

[10]  David Witt Nyström Okounkov bodies and the K\"ahler geometry of projective manifolds , 2015 .

[11]  K. Ueda,et al.  Toric degenerations of Gelfand-Cetlin systems and potential functions , 2008, 0810.3470.

[12]  Timothy Magee Fock-Goncharov conjecture and polyhedral cones for $U \subset SL_n$ and base affine space $SL_n /U$ , 2015, 1502.03769.

[13]  M. Pabiniak,et al.  The Gromov width of coadjoint orbits of the symplectic group , 2016, 1601.02825.

[14]  Peter Littelmann,et al.  Paths and root operators in representation theory , 1995 .

[15]  Evgeny Feigin,et al.  PBW filtration and bases for irreducible modules in type An , 2010, 1002.0674.

[16]  A. Gornitskii Essential signatures and canonical bases of irreducible representations of the group G2 , 2015 .

[17]  Shrawan Kumar,et al.  Algebraization of Frobenius splitting via quantum groups , 2000, math/0005246.

[18]  EVGENY FEIGIN,et al.  FAVOURABLE MODULES: FILTRATIONS, POLYTOPES, NEWTON–OKOUNKOV BODIES AND FLAT DEGENERATIONS , 2013, 1306.1292.

[19]  R. Chirivì Deformation and Cohen-Macaulayness of the multicone over the flag variety , 2001 .

[20]  Evgeny Feigin,et al.  PBW filtration and bases for symplectic Lie algebras , 2010, 1010.2321.

[21]  Federico Ardila,et al.  Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes , 2010, J. Comb. Theory, Ser. A.

[22]  Toric degenerations of Schubert varieties , 2000, math/0012165.

[23]  David E Speyer,et al.  Weak separation and plabic graphs , 2011, 1109.4434.

[24]  Евгений Юрьевич Смирнов,et al.  Исчисление Шуберта и многогранники Гельфанда - Цетлина@@@Schubert calculus and Gelfand - Tsetlin polytopes , 2012 .

[25]  Toric degenerations of spherical varieties , 2004, math/0403379.

[26]  P. Littelmann Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras , 1998 .

[27]  M. Pabiniak Gromov width of non-regular coadjoint orbits of U(n), SO(2n) and SO(2n+1) , 2013, 1302.7213.

[28]  L. Williams,et al.  Cluster duality and mirror symmetry for Grassmannians , 2015, 1507.07817.

[29]  Alexander Caviedes Castro Upper bound for the Gromov width of coadjoint orbits of compact Lie groups , 2014, 1404.4647.

[30]  C. S. Seshadri,et al.  Standard monomial theory , 1981 .

[31]  Paul Hacking,et al.  Canonical bases for cluster algebras , 2014, 1411.1394.

[32]  Polytopes Associated to Demazure Modules of Symmetrizable Kac–Moody Algebras of Rank Two☆ , 2000 .

[33]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[34]  M. Reineke,et al.  Linear degenerations of flag varieties , 2016, Mathematische Zeitschrift.

[35]  Ghislain Fourier,et al.  Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence , 2014, 1410.8744.

[36]  Joydeep Ghosh,et al.  Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.

[37]  X. Fang,et al.  Simplices in Newton–Okounkov bodies and the Gromov width of coadjoint orbits , 2016, 1607.01163.

[38]  A. Gornitskii Essential Signatures and Canonical Bases for Irreducible Representations of $D_4$ , 2015, 1507.07498.

[39]  Robert Lazarsfeld,et al.  Convex Bodies Associated to Linear Series , 2008, 0805.4559.

[40]  David Anderson Okounkov bodies and toric degenerations , 2010, 1001.4566.

[41]  V. Lakshmibai,et al.  Degenerations of flag and Schubert varieties to toric varieties , 1996 .

[42]  Ezra Miller,et al.  Toric degeneration of Schubert varieties and Gelfand¿Tsetlin polytopes , 2003 .

[43]  R. Yu,et al.  Degeneration of Schubert varieties of SL(n)/B to toric , 2001 .

[44]  W. V. D. Hodge,et al.  Some Enumerative Results in the Theory of Forms , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  M. Finkelberg,et al.  Symplectic Degenerate Flag Varieties , 2011, Canadian Journal of Mathematics.

[46]  David A. Cox,et al.  The topology of toric varieties , 2011 .

[47]  R. Chirivì LS algebras and application to Schubert varieties , 2000 .

[48]  C. S. Seshadri,et al.  Geometry of GP−V , 1986 .

[49]  M. Kashiwara Crystal bases of modified quantized enveloping algebra , 1994 .

[50]  Kiumars Kaveh Crystal bases and Newton–Okounkov bodies , 2011, 1101.1687.

[51]  Kiumars Kaveh TORIC DEGENERATIONS AND SYMPLECTIC GEOMETRY OF PROJECTIVE VARIETIES , 2018 .

[52]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[53]  Relevement geometrique de la base canonique et involution de Sch , 2003, math/0309424.

[54]  Lattice Polytopes Associated to Certain Demazure Modules of sln + 1 , 1999 .

[55]  C. Geiss,et al.  Partial flag varieties and preprojective algebras , 2006, math/0609138.

[56]  Maciej Dunajski,et al.  Integrable Systems , 2012 .

[57]  Evgeny Feigin,et al.  Degenerate flag varieties and the median Genocchi numbers , 2011, 1101.1898.

[58]  X. Fang,et al.  DEGREE CONES AND MONOMIAL BASES OF LIE ALGEBRAS AND QUANTUM GROUPS , 2016, Glasgow Mathematical Journal.

[59]  H. Seppanen Okounkov bodies for ample line bundles with applications to multiplicities for group representations , 2014, 1409.2026.

[60]  Kelli Talaska,et al.  A Formula for Plücker Coordinates Associated with a Planar Network , 2008, 0801.4822.

[61]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[62]  Ghislain Fourier,et al.  PBW-degenerated Demazure modules and Schubert varieties for triangular elements , 2014, J. Comb. Theory, Ser. A.

[63]  C. Eur On Newton-Okounkov bodies , 2018 .

[64]  Ghislain Fourier,et al.  PBW-type filtration on quantum groups of type $A_n$ , 2015, 1503.05428.

[65]  K. Ueda,et al.  Potential functions via toric degenerations , 2008, 0812.0066.

[66]  J. Scott Grassmannians and Cluster Algebras , 2003, math/0311148.

[67]  Kiumars Kaveh,et al.  Toric degenerations and symplectic geometry of smooth projective varieties , 2015, J. Lond. Math. Soc..

[68]  Atsushi Ito Okounkov bodies and Seshadri constants , 2012, 1202.6662.