Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors

As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly tenfold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of “frequency collisions” that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that, without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However, with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.

[1]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .

[2]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[3]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[4]  E. Holland,et al.  Development of transmon qubits solely from optical lithography on 300 mm wafers , 2019, Quantum Science and Technology.

[5]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[6]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[7]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[8]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[9]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[10]  Tyler Y Takeshita,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[11]  Jay M. Gambetta,et al.  Cross-resonance interactions between superconducting qubits with variable detuning , 2014 .

[12]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[13]  Franco Nori,et al.  Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates , 2012, 1201.3360.

[14]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[15]  M. Bal,et al.  Overlap junctions for high coherence superconducting qubits , 2017, 1705.08993.

[16]  Andrew W. Cross,et al.  Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code , 2014, 1410.6419.

[17]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[18]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[19]  Complete stabilization and improvement of the characteristics of tunnel junctions by thermal annealing , 2006, cond-mat/0611664.

[20]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[21]  Jay M. Gambetta,et al.  Reducing Unitary and Spectator Errors in Cross Resonance with Optimized Rotary Echoes , 2020, 2007.02925.

[22]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[23]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[24]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[25]  Markus Brink,et al.  Demonstration of quantum volume 64 on a superconducting quantum computing system , 2020, Quantum Science and Technology.

[26]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[27]  Matteo A. C. Rossi,et al.  IBM Q Experience as a versatile experimental testbed for simulating open quantum systems , 2019, npj Quantum Information.

[28]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[29]  Easwar Magesan,et al.  First-principles analysis of cross-resonance gate operation , 2020, 2005.00133.

[30]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .

[31]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[32]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[33]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[34]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[35]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[36]  R. Monaco,et al.  Annealing properties of high quality Nb/Al-AlO/sub x//Nb tunnel junctions , 1994, IEEE Transactions on Applied Superconductivity.

[37]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[38]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[39]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[40]  K. H. Gundlach,et al.  Thermal annealing properties of Nb‐Al/AlOx‐Nb tunnel junctions , 1992 .

[41]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[42]  J. Baumberg,et al.  CMOS compatible fabrication methods for submicron Josephson junction qubits , 2001 .

[43]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[44]  J. Ignacio Cirac,et al.  Analogue quantum chemistry simulation , 2018, Nature.

[45]  S. Valenzuela,et al.  Lateral metallic devices made by a multiangle shadow evaporation technique , 2012 .

[46]  Jay M. Gambetta,et al.  Effective Hamiltonian models of the cross-resonance gate , 2018, Physical Review A.

[47]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.