Enhanced solubility and modified release of poorly water-soluble drugs via self-assembled gelatin-oleic acid nanoparticles.

[1]  P. Tran,et al.  Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel. , 2014, Journal of Biomedical Nanotechnology.

[2]  P. Tran,et al.  Novel multifunctional biocompatible gelatin-oleic acid conjugate: self-assembled nanoparticles for drug delivery. , 2013, Journal of biomedical nanotechnology.

[3]  Takeo Iwamoto,et al.  Peptide Nanovesicles Formed by the Self-Assembly of Branched Amphiphilic Peptides , 2012, PloS one.

[4]  Sergiy Minko,et al.  Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems , 2010 .

[5]  P. Tran,et al.  Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[6]  P. York,et al.  Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  P. Tran,et al.  Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[8]  Dar-Bin Shieh,et al.  Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. , 2008, Biomaterials.

[9]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer Types of Nanoparticles Used as Drug Delivery Systems , 2022 .

[10]  Hong Yuan,et al.  Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity , 2008, Nanotechnology.

[11]  M. Álvarez,et al.  Rapid generation of protein aerosols and nanoparticles via SAW atomisation , 2008 .

[12]  Pierre Blanchet,et al.  Alumina and zirconia acrylate nanocomposites coatings for wood flooring: Photocalorimetric characterization , 2008 .

[13]  R. M. Fitch,et al.  The mechanism of particle formation in polymer hydrosols. I. Kinetics of Aqueous Polymerization of Methyl Methacrylate , 2007 .

[14]  Jianfeng Chen,et al.  Preparation and Characterization of Amorphous Cefuroxime Axetil Drug Nanoparticles with Novel Technology: High-Gravity Antisolvent Precipitation , 2006 .

[15]  Vladimir P. Torchilin,et al.  Nanoparticulates as Drug Carriers , 2006 .

[16]  A. Bajpai,et al.  In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles , 2006 .

[17]  Y. Tabata,et al.  Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. , 2006, Biomacromolecules.

[18]  M. López-Quintela,et al.  Electrochemical synthesis and stabilization of cobalt nanoparticles , 2006 .

[19]  R. Zhuo,et al.  Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. , 2005, Biomaterials.

[20]  Akash Jain,et al.  Solubilization and preformulation studies on PG-300995 (an anti-HIV drug). , 2005, Journal of pharmaceutical sciences.

[21]  O. Kayser,et al.  The impact of nanobiotechnology on the development of new drug delivery systems. , 2005, Current pharmaceutical biotechnology.

[22]  A. Shojaei,et al.  Effect of Hydroxypropyl β‐Cyclodextrin on Drug Solubility in Water‐Propylene Glycol Mixtures , 2004, Drug development and industrial pharmacy.

[23]  Elaine Merisko-Liversidge,et al.  Nanosizing: a formulation approach for poorly-water-soluble compounds. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  S. Sahoo,et al.  Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[25]  J. Nah,et al.  Testosterone-encapsulated Surfactant-free Nanoparticles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior , 2002 .

[26]  T. Hosokawa,et al.  Formulation development of a filter-sterilizable lipid emulsion for lipophilic KW-3902, a newly synthesized adenosine A1-receptor antagonist. , 2002, Chemical & pharmaceutical bulletin.

[27]  R. Müller,et al.  Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. , 2001, Advanced drug delivery reviews.

[28]  J Dressman,et al.  Improving drug solubility for oral delivery using solid dispersions. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  A. Serajuddin,et al.  Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. , 1999, Journal of pharmaceutical sciences.

[30]  Lei Zhu,et al.  Studies on Novel Surfactant-Free Polystyrene Nanoparticles Formed in Microphase Inversion , 1998 .

[31]  Y. M. Lee,et al.  Clonazepam release from core-shell type nanoparticles in vitro. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[32]  S. Yalkowsky,et al.  Solubilization of diazepam. , 1998, PDA journal of pharmaceutical science and technology.

[33]  M. Brewster,et al.  Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. , 1996, Journal of pharmaceutical sciences.

[34]  K. Uekama Pharmaceutical Application of Cyclodextrins , 1983 .