Primal-dual Newton Methods in Structural Optimization

We consider the numerical solution of optimization problems for systems of partial differential equations with constraints on the state and design variables as they arise in the optimal design of the shape and the topology of continuum mechanical structures. After discretization the resulting nonlinear programming problems are solved by an “all-at-once” approach featuring the numerical solution of the state equations as an integral part of the optimization routine. In particular, we focus on primal-dual Newton methods combined with interior-point techniques for an appropriate handling of the inequality constraints. Special emphasis is given on the efficient solution of the primal-dual system that results from the application of Newton’s method to the Karush–Kuhn–Tucker conditions where we take advantage of the special block structure of the primal-dual Hessian. Applications include structural optimization of microcellular biomorphic ceramics by homogenization modeling, the shape optimization of electrorheological devices, and the topology optimization of high power electromotors.

[1]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[2]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[3]  E. Vogli,et al.  Biomorphic SiC-ceramic prepared by Si-vapor phaseinfiltration of wood , 2002 .

[4]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[5]  Ralf Hiptmair,et al.  Numerical simulation of electrorheological fluids based on an extended Bingham model , 2000 .

[6]  Kumbakonam R. Rajagopal,et al.  Flow of electro-rheological materials , 1992 .

[7]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[8]  Peter Greil,et al.  Biomorphic cellular silicon carbide ceramics from wood : II. Mechanical properties , 1998 .

[9]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[10]  Ronald H. W. Hoppe Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems , 2003 .

[11]  M. Winterer,et al.  Processing and Microstructure , 2002 .

[12]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[13]  Philip E. Gill,et al.  Practical optimization , 1981 .

[14]  Ronald H. W. Hoppe,et al.  Homogenization design method for biomorphic composite materials , 2004, J. Comput. Methods Sci. Eng..

[15]  R. Hoppe,et al.  Applications of Primal-dual Interior Methods in Structural Optimization , 2003 .

[16]  M. Hintermueller,et al.  A primal-dual active set algorithm for bilaterally control constrained optimal control problems , 2003 .

[17]  Ya-Xiang Yuan Advances in Nonlinear Programming , 1998 .

[18]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[19]  R.H.W. Hoppe,et al.  PROBLEMS ON ELECTRORHEOLOGICAL FLUID FLOWS , 2003 .

[20]  R. Hoppe,et al.  Modeling, Simulation, and Optimization of Microstructured Biomorphic Materials , 2004 .

[21]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[22]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[23]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[24]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[25]  A. R. Arellano-López,et al.  Low density biomorphic silicon carbide: microstructure and mechanical properties , 2002 .

[26]  Ronald H. W. Hoppe,et al.  Homogenized elasticity solvers for biomorphic microcellular ceramics , 2003 .

[27]  Yuri V. Vassilevski,et al.  Adaptive Grid Refinement for Computation of the Homogenized Elasticity Tensor , 2003, LSSC.

[28]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[29]  Gerhard Wachutka,et al.  Optimal Design of High Power Electronic Devices by Topology Optimization , 2003 .

[30]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[31]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[32]  Peter Greil,et al.  Biomorphic Cellular Silicon Carbide Ceramics from Wood: I. Processing and Microstructure , 1998 .

[33]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[34]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[35]  A. Cherkaev Variational Methods for Structural Optimization , 2000 .

[36]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[37]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[38]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[39]  Volker Schulz,et al.  Interior point multigrid methods for topology optimization , 2000 .

[40]  Ronald H. W. Hoppe,et al.  Primal–dual Newton interior point methods in shape and topology optimization , 2004, Numer. Linear Algebra Appl..

[41]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[42]  R. Hoppe,et al.  Primal-Dual Newton-Type Interior-Point Method for Topology Optimization , 2002 .

[43]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[44]  M. Heinkenschloss,et al.  Airfoil Design by an All-at-once Method* , 1998 .

[45]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[46]  Peter Deuflhard,et al.  The Central Path towards the Numerical Solution of Optimal Control Problems , 2001 .

[47]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[48]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[49]  Ronald H. W. Hoppe,et al.  Optimal shape design in biomimetics based on homogenization and adaptivity , 2004, Math. Comput. Simul..

[50]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[51]  P. Greil,et al.  Biomorphous SiOC/C-ceramic composites from chemically modified wood templates , 2004 .

[52]  Martin Weiser,et al.  Interior Point Methods in Function Space , 2005, SIAM J. Control. Optim..

[53]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[54]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[55]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[56]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[57]  Frank E. Filisko Overview of ER Technology , 1995 .

[58]  Stefan Ulbrich,et al.  Superlinear Convergence of Affine-Scaling Interior-Point Newton Methods for Infinite-Dimensional Nonlinear Problems with Pointwise Bounds , 2000, SIAM J. Control. Optim..

[59]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[60]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[61]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[62]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[63]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[64]  J MEAD,et al.  Mechanical properties of lungs. , 1961, Physiological reviews.

[65]  Gabriel Wittum,et al.  On the convergence of multi-grid methods with transforming smoothers , 1990 .

[66]  Gerhard Wachutka,et al.  Modelling and Simulation of the Transient Electromagnetic Behavior of High Power Bus Bars , 2002 .

[67]  Ronald H. W. Hoppe,et al.  Topology Optimization of High Power Electronic Devices , 2001 .

[68]  P. Greil,et al.  Manufacturing of Porous Oxide Ceramics by Replication of Plant Morphologies , 2001 .