Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels.

[1]  Charles S. Peskin,et al.  Numerical simulations of two-dimensional foam by the immersed boundary method , 2010, J. Comput. Phys..

[2]  D. B. Kothe,et al.  Modeling surface tension using a ghost fluid technique within a volume of fluid formulation , 2004 .

[3]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[4]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[5]  Jacob K. White,et al.  An implicit immersed boundary method for three-dimensional fluid-membrane interactions , 2009, J. Comput. Phys..

[6]  S. Hysing,et al.  A new implicit surface tension implementation for interfacial flows , 2006 .

[7]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[8]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[9]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[10]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[11]  J. Hochstein,et al.  An implicit surface tension model , 1996 .

[12]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[13]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[14]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[15]  J. Mostaghimi,et al.  A semi‐implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows , 2009 .

[16]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[17]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[18]  Ming-Chih Lai,et al.  An immersed boundary method for interfacial flows with insoluble surfactant , 2008, J. Comput. Phys..

[19]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[20]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[21]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[22]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[23]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[24]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[25]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[26]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[27]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[28]  Arnold Reusken,et al.  Finite Element Discretization Error Analysis of a Surface Tension Force in Two-Phase Incompressible Flows , 2007, SIAM J. Numer. Anal..

[29]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[30]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[31]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[32]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[33]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[34]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[35]  Peng Song,et al.  A diffuse-interface method for two-phase flows with soluble surfactants , 2011, J. Comput. Phys..

[36]  Jim Douglas,et al.  ALTERNATING-DIRECTION GALERKIN METHODS ON RECTANGLES , 1971 .

[37]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[38]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[39]  P. Smereka The numerical approximation of a delta function with application to level set methods , 2006 .

[40]  B. Engquist,et al.  Numerical approximations of singular source terms in differential equations , 2004 .

[41]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[42]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[43]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[44]  Yu Wang,et al.  A Jacobian‐free‐based IIM for incompressible flows involving moving interfaces with Dirichlet boundary conditions , 2010 .

[45]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[46]  Murray Rudman,et al.  Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation , 2010, J. Comput. Phys..

[47]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[48]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[49]  Elbridge Gerry Puckett,et al.  Two new methods for simulating photolithography development in 3D , 1997 .

[50]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[51]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[52]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[53]  A. Reusken,et al.  An extended finite element method applied to levitated droplet problems , 2010 .

[54]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[55]  Frédéric Gibou,et al.  An efficient fluid-solid coupling algorithm for single-phase flows , 2009, J. Comput. Phys..

[56]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[58]  Paul Vigneaux,et al.  On stability condition for bifluid flows with surface tension: Application to microfluidics , 2008, J. Comput. Phys..

[59]  Olivier Desjardins,et al.  A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection , 2010, J. Comput. Phys..

[60]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[61]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[62]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .